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e The textbook ML setting:
» Train oni.i.d. samples from some distribution, X; ~ [P

» Training error & test error on [P
= So our model should be good on more samples from P

e Really:
= Train on “i.i.d. samples from some distribution, X; ~ P"

= Training error might vaguely correlate with test error on [’

= Deploy it on some distribution (), might be sort of like [P
o and probably changes over time...
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Two-sample testing

e Given samples from two unknown distributions
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Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]

Do these dob and birthday columns mean the same thing?

Does my generative model match Pg,:4?

Independence testing: is P(X,Y) = P(X)P(Y)?
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Two-sample testing

Given samples from two unknown distributions
X~ P ~

Question: is [P = ()7

Hypothesis testing approach:
HO P = Hl - P 75

Reject Hy if test statistic T (X, V) > ca
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What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

—_— P=0
— PZQ

false rejection rate: want =«

power: true rejection rate

0.1 0.2 0.3 0.4
T(X.Y)
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Need a 1" to estimate the difference between distributions,
based on samples

Our choice of T": the Maximum Mean Discrepancy (MMD)

This is a kernel-based distance between distributions
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What's a kernel again?
Linear classifiers: §(z) = sign(f(z)), f(z) = w' (=, 1)
Use a “richer” x:
flz) =w' (z,2°,1) = w' ¢(x)

Can avoid explicit ¢(x); instead k(x, y) = (¢(x), d(y))

“Kernelized” algorithms access data only through k(x, y)

f(z) = (w, @) = D aih(X;,2)

||f||;t¢ - \/OzTKoz gives kernel notion of smoothness
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Maximum Mean Discrepancy (MMD)

MMDy (P, Q) = sup E [f(X)]— E [f(¥)]
Il <1 X~P e

The sup is achieved by f(t) o< Exp|f(t)] — Evo[f(?)]

MMD?*(P,Q) = E [k(X,X") +k(,Y") —2k(X,Y)]
X, X'~P
V.,V ~0Q
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MMDy (P, Q) = sup Ep[f(X)]— E [f(Y)]
| fllg <14~ Y~Q

= sup E [(f,o(X)u]l— E [(f,e(Y))x]

| Fllgg <1 X~F Y~Q
— sup <f, E [p(X)] - E [SO(Y)]>
Ifl <t \~ X~P V0 "
= sup <f,u{§>—u’“> = ||k — p
£l <1 0/ || Q”H
(e, ué)n = E (p(X),p(YV))n = E k(X,Y)
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MMDy(P,0) = sup E [f(X)]— E [f(V)

[ fllgy <1 X~F e
_ ||fS||uIi 1)%[( £, (X)) — YIE@KJ"’, (V)]
il <f’ Ropl# - YIEQ[SO(Y)]>H

= sup (fuk—pb) = |uk—ut],

1Fll3 <1
k ,,k __ _
(pp,pui)n = B (p(X),p(V))u = E_k(X,Y)
V~Q Y~Q

MMD*(P,0) = E [k(X,X") + k(V,Y") = 2k(X, V)]
Yﬁ”NQ



Estimating MMD

2 _ / AN
MMDk (Pa Q) — X,)]?;'NIP[k(X, X )] + Y,}QENQ[k(Y, Y )] 2 {;%5 [k(Xa Y)]



Estimating MMD

MMD;(P,0) = E [k(X, X+ E [k(V,Y)]=2 E [k(X,V)

~Y

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy ) — 2mean(K xy)



Estimating MMD

MMD;(P,0) = E [k(X, X+ E [k(V,Y)]=2 E [k(X,V)

~Y

—_— 2
MMD, (X,Y) = mean(Kxx ) + mean(Kyy ) — 2mean(K xy)

Kxx
— 10
@

— 1.0



Estimating MMD

MMD;(P,0) = E [k(X, X+ E [k(V,Y)]=2 E [k(X,V)

~Y

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy ) — 2mean(K xy)
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Estimating MMD

MMD;(P,0) = E [b(X, X))+ E [k(V,V)]=2 E_[kX,Y)]

~Y

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy ) — 2mean(K xy )

Kxx K Kx

— 10 8 o oo o2
—p3 o [ 10 J o: Joz oz
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MMD as feature matching

MMDy (P, Q) = |

E [o(X)] - E (1)

X~ P 2

e v : X — Histhe feature map for k(a:, y) - (90(213), 90(3/)>

o Ifk(z,y) = 2"y, p(z) = z, then
the MMD is distance between means

e Many kernels: infinite-dimensional H
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MMD-based tests
If k is characteristicc MMD(IP, Q) = 0iff P =

Efficient permutation testing for MMD (X, V)

— 2
» Hy: nMMD converges in distribution

= Hi: /n(MMD — MMD*) asymptotically normal
Any characteristic kernel gives consistent test...eventually

Need enormous 7 if kernel is bad for problem
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Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

. T(X, Y') is the accuracy of f on the test set

e Under H)y, classification impossible: T ~ Binomial(n, l)

2
» With k(z, y) = 7 f(2)f(y) where f(z) € {-1,1},
get MMD(X, V) = |T(X,Y) —
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Deep learning and deep kernels

k(z,y) = if(w)f(y) is one form of deep kernel

Deep models are usually of the form f(z) = w' ¢, (z)
= With a learned ¢ () : X — RP

If we fix 1, have f € H,, with ky (z,y) = ¢y ()" ¢y (v)
= Same idea as NNGP approximation

Generalize to a deep kernel:

ky(z,y) = & (dy(x), Dy (y))
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Normal deep learning C deep kernels

o Take by (z,y) = 5 fu () fu(y) +1
e Final function in H,, will be a f () +0b

e With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo*! Geoff Pleiss“! Yu Sun”! Kilian Q. Weinberger !
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So what?

This definitely does not say that deep learning is (even
approximately) a kernel method

...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

We know theoretically deep learning can learn some things
faster than any kernel method [see Malach+ ICML-21 + refs]

But deep kernel learning # traditional kernel models
= exactly like how usual deep learning # linear models


https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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Optimizing power of MMD tests

— 2
e Asymptotics of MMD give us immediately that

0 n MMD?
Pr (nMMD > ca) ~ & (*/_ Co )

Hy O-H1 \/ﬁo'Hl

MMD, og, , ¢y are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /o,

— .

e Use MMD from before, get 65, from U-statistic theory

1

o Can show uniform Op(n 3 ) convergence of estimator






Blobs kernels
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Investigating a GAN on MNIST
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1 dataset images
2 GAN samples
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CIFAR-10 vs CIFAR-10.1

_ A N ‘_7"1 "L_::_u..
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f"\‘ : ﬂ LB 7

I « %

Bel |
kel
Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:
ME SCF C25sT MMD-O MMD-D

0.588 0.171 0.452 0.316 0.744




Ablation vs classifier-based tests

Cross-entropy Max power
Dataset Sign Lin Ours Sign Lin Ours
Blobs 0.84 0.94 0.90 - 095 0.99
High-d Gauss. mix. 0.47 0.59 0.29 - 0.64 0.66
Higgs 0.26 0.40 0.35 - 030 0.40

MNIST vs GAN 0.65 0.71 0.80 - 094 1.00
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But...

What if you don't have much data for your testing problem?
Need enough data to pick a good kernel
Also need enough test data to actually detect the difference

Best split depends on best kernel's quality / how hard to find
= Don't know that ahead of time; can't try more than one
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Meta-testing

e One idea: what if we have related problems?

e Similar setup to meta-learning:

1 ?

>

I\ Exemplars i Evaluation data (Query set) /
- Y

Exemplars Evaluation data (Query set)

' ) | o >N .
L Exemplars ! Evaluation data (Query set) } (from Wei+ 201 8)



https://arxiv.org/abs/1805.04288

Meta-testing for CIFAR-10 vs CIFAR-10.]
e CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031
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Meta-testing for CIFAR-10 vs CIFAR-10.]
e CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031

e Where do we get related data from?

e One option: set up tasks to distinguish classes of CIFAR-10
(airplane vs automobile, airplane vs bird, ...)



One approach (MAML-like)
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One approach (MAML-like)

’ -y

I
‘H N
__|__ Dataspiting | _ Ay is, e.g., 5 steps of
.’\E - .'\E b | gradient descent
input
1 1 we learn the
_O_Ut&, L —{MMD Test] initialization, maybe
step size, etc
_____ {p_p I_y_ Meta-train A on related tasks P
I ” N
:argAmaXJ( A Ae (7 )
0

B samples from P B samples from Q ™ [™] Training Samples [l Testing Samples Meta-Samples

This works, but not as well as we'd hoped...
Initialization might work okay on everything, not really adapt



Another approach: Meta-MKL

- e o oy

o W
\ . .
~-__|__,’ Inspired by classic
_ [ Data Spiiting 1 multiple kernel
. ) . : learnin
‘\;_ _=,"Learn weights ‘\;_ _E_," g
maxf
R -~ Zﬁi‘“ Only need to learn
D=5 k). &% linear combination B;
I - .
! | ! on test task:
: I ! '
| 20 fn) [MMD Test] much easier

——————————

. Samples from P . Samples from Q D D Training Samples E E Testing Samples Meta-Samples
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e But multiplier is much better:
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Theoretical analysis for Meta-MKL

e Same big-O dependence on test task size &

e But multiplier is much better:
based on number of meta-training tasks, not on network size

e Coarse analysis: assumes one meta-tasks is “related” enough
= We compete with picking the single best related kernel

= Haven't analyzed meaningfully combining related kernels
(yet!)



Results on CIFAR-10.]

my = 100 My = 200
Methods
mye = 200 my, = 500 my, = 900 mye = 200 my = 500 my = 900
ME 0.084:0000 0.096+0016 0.160+00s5  0.104x0013  0.20220020 0.3262003
SCF 0.047x003  0.037<00n  0.047+005  0.02620000 0.0184006 0.026+0.012
C25T-S 0.059+0000  0.062+0007  0.09920007  0.09220011  0.0544001  0.0570.008
C25T-L | 0.064x0000 0.06420006 0.0630000  0.07520014  0.066+001  0.067 0008
MMD-O | 0.091:00n1  0.141:0000 0.279:008  0.084:000r  0.1601001  0.3190.020
MMD-D  0.104x000r  0.22210020 0.418400.6  0.1172003  0.226400m  0.4442003
AGT-KL | 0.170x002  0.457+0052  0.7652005  0.1522008  0.463x0060  0.778=0050
Meta-KL 0.245+0010  0.671:0026  0.959+0.013 0.226+005  0.668:0052  0.972+0.006
Meta-MKL 0.277 10016 0.728+0.020 0.973 40008 0.25540.020 0.724 10026 0.9930.005




But...

e Sometimes we know ahead of time that there are differences
that we don't care about



But...

e Sometimes we know ahead of time that there are differences
that we don't care about
= |n the MNIST GAN criticism, initial attempt just picked out
that the GAN outputs numbers that aren't one of the 256
values MNIST has



But...

e Sometimes we know ahead of time that there are differences
that we don't care about
= |n the MNIST GAN criticism, initial attempt just picked out
that the GAN outputs numbers that aren't one of the 256
values MNIST has

t

I/

e Can we find a kernel that can distinguish P* from
but can't distinguish [P? from ()°?



But...

e Sometimes we know ahead of time that there are differences
that we don't care about
= |n the MNIST GAN criticism, initial attempt just picked out
that the GAN outputs numbers that aren't one of the 256
values MNIST has

e Can we find a kernel that can distinguish P* from QF,

but can't distinguish [P? from ()°?

e Also useful for fair representation learning



But...

e Sometimes we know ahead of time that there are differences
that we don't care about
= |n the MNIST GAN criticism, initial attempt just picked out
that the GAN outputs numbers that aren't one of the 256
values MNIST has

e Can we find a kernel that can distinguish P* from QF,

but can't distinguish [P? from ()°?

e Also useful for fair representation learning
= e.g. can distinguish “creditworthy” vs not,
can't distinguish by race
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High on one power, low on another
Choose k with miny pf — pt
(MMD)?

O H,
= No good: doesn't balance power appropriately

VA(MMD)? — ¢,

OH,

e Firstidea: p =

e Secondidea: p = @

= Can estimate ¢, inside the optimization

= Better, but tends to “stall out” in minimizing py



Block estimator [Zaremba+ NeurlPS-13]
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Block estimator [Zaremba+ NeurlPS-13]

e Use previous MMD on b blocks, each of size B

e Final estimator: average of each block's estimate
= Each block has previous asymptotics

s Central limit theorem across blocks

MMD?
e Powerisp =& (\/bB > & 1(1 - a))

0'H1



https://arxiv.org/abs/1307.1954
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MMD-B-Fair
e Choose k as miny, pi — pt
= pis the power of a test with b blocks of size B

= We don't actually use a block estimator computationally

= b, B have nothing to do with minibatch size

e Representation learning: ming max, pio¢ - pfq,oqb

= Deep kernel is |k 0 ¢|(z,y) = k(P(z), d(y))

= K could be deep itself, with adversarial optimization

= For now, just Gaussians with different lengthscales



Adult Data Set

Download- Data Folder, Data Set Description

Adult

Abstract: Predict whether income exceeds $50K/yr based on census data. Also known as "Census

Income" dataset.

Data Set Characteristics:

Multivariate

Number of Instances: || 48842 || Area: Social
Attribute Characteristics: || Categorical, Integer || Number of Attributes: | 14 Date Donated 1996-05-01
Associated Tasks: Classification Missing Values? Yes Number of Web Hits: | 2390574




Adult

Adult Data Set

Download- Data Folder, Data Set Description

Abstract: Predict whether income exceeds $50K/yr based on census data. Also known as "Census
Income" dataset.

Data Set Characteristics: Multivariate Number of Instances: || 48842 || Area: Social
Attribute Characteristics: || Categorical, Integer || Number of Attributes: | 14 Date Donated 1996-05-01
Associated Tasks: Classification Missing Values? Yes Number of Web Hits: | 2390574

Shapes3D

IPSZ S.



S : S Pr(sensitive)
ci-ratio Method | Pritarget)T Pr(sensitive). fine-tuned.
Laftr 0.2500 0.6100 1.000 (e = 0.111)
(0.1,0.1) Cfair 0.2500 0.6071 0.8929 (o = 0.087)
Ffvae 0.1785 0.6428 1.000 (e = 0.0695)
Ours 1L.000 0.2500 0.9642 (o = 0.007)
Laftr 0.285 0.607 1.000 (o = 0.237)
(0.33,0.66) | Cfair 0.2857 0.6071 1.000 (o = 0.234)
Ffvae 0.9642 1.000 1.000 (o = 0.075)
Ours 1.000 0.5614 0.6842 (o = 0.005)

(a) Adult dataset: Our method outperforms all others even when
additional layers are trained to maximize the sensitive power (albeit
with smaller bandwidths in the under-represented scenario).

s e Pr(sensitive)
ci-ratio | Method | Pr(target)t Pr(sensitive)) Bhe e
Laftr 1.000 1.000 1.000 (o = 0.001)
(0.1,0.1) | Cfair 1.000 1.000 1.000 (o = 0.003)
Ffvae 0.9574 0.9787 1.000 (o = 0.1002)
Ours 1.000 0.0744 0.9625 (o = 0.0205)
Laftr 1.000 1.000 1.000 (o = 0.006)
(0.9,0.1) | Cfair 1.000 1.000 1.000 (o = 0.005)
Ffvae 0.8723 0.8723 1.000 (o = 0.092)
Ours 0.1383 1.000 1.000 (o = 0.006)

(b) 3DShapes dataset: Our method is able to outperform others
in the under-represented case, but the highly correlated scenario of
ci-ratio=(0.9,0.1) is a failure case.



Multiple targets / sensitive attributes
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Remaining challenges

MMD-B-Fair:
» When s and t are very correlated

= For attributes with many values (use HSIC?)
Meta-testing: more powerful approaches, better analysis

When [P #£ (), can we tell how they're different?
= Methods so far: low-d, and/or points w/ large critic value

s
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Avoid the need for data splitting (selective inference)
= Kubler+ NeurlPS-20 gave one method, but very limited


https://arxiv.org/abs/2006.02286

A good takeaway

Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.
— Y. Bengio &Y. LeCun (2007), “Scaling Learning Algorithms towards Al”


http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf

