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The textbook ML setting:

Train on i.i.d. samples from some distribution, 

Training error  test error on 

So our model should be good on more samples from 

Really:

Train on “i.i.d. samples from some distribution, ”

Training error might vaguely correlate with test error on 

Deploy it on some distribution , might be sort of like 

and probably changes over time…
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Two-sample testingTwo-sample testing
Given samples from two unknown distributions

Question: is ?

Do smokers/non-smokers get di�erent cancers?

Do Brits have the same friend network types as Americans?

When does my laser agree with the one on Mars?

Are storms in the 2000s di�erent from storms in the 1800s?

Does presence of this protein a�ect DNA binding? [ ]

Do these dob and birthday columns mean the same thing?

Does my generative model  match ?

Independence testing: is ?

MMDiff2

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html
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Two-sample testingTwo-sample testing
Given samples from two unknown distributions

Question: is ?

Hypothesis testing approach:

Reject  if test statistic 
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Need a  to estimate the di�erence between distributions,

based on samples

Our choice of : the Maximum Mean Discrepancy (MMD)

This is a kernel-based distance between distributions
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Linear classi�ers: , 

Use a “richer” :

Can avoid explicit ; instead 

“Kernelized” algorithms access data only through 

 gives kernel notion of smoothness
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Estimating MMDEstimating MMD

1.0 0.2 0.6

0.2 1.0 0.5

0.6 0.5 1.0

1.0 0.8 0.7

0.8 1.0 0.6

0.7 0.6 1.0

0.3 0.1 0.2

0.2 0.3 0.3

0.2 0.1 0.4
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MMD as feature matchingMMD as feature matching

 is the feature map for 

If , , then 

the MMD is distance between means

Many kernels: in�nite-dimensional



MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 



MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal



MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal

Any characteristic kernel gives consistent test



MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal

Any characteristic kernel gives consistent test…eventually



MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal

Any characteristic kernel gives consistent test…eventually

Need enormous  if kernel is bad for problem



Classifier two-sample testsClassifier two-sample tests

 is the accuracy of  on the test set

Under , classi�cation impossible: 



Classifier two-sample testsClassifier two-sample tests
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Under , classi�cation impossible: 

With  where , 

get 
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 is one form of deep kernel

Deep models are usually of the form 

With a learned

If we �x , have  with 

Same idea as NNGP approximation

Generalize to a deep kernel:
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So what?So what?
This de�nitely does not say that deep learning is (even

approximately) a kernel method

…despite what some people might want you to think

We know theoretically deep learning can learn some things

faster than any kernel method [see  + refs]

But deep kernel learning ≠ traditional kernel models

exactly like how usual deep learning ≠ linear models

Malach+ ICML-21

https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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Optimizing power of MMD testsOptimizing power of MMD tests

Asymptotics of  give us immediately that

, ,  are constants: �rst term usually dominates

Pick  to maximize an estimate of 

Use  from before, get  from U-statistic theory

Can show uniform  convergence of estimator
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Investigating a GAN on MNISTInvestigating a GAN on MNIST



CIFAR-10 vs CIFAR-10.1CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:

ME SCF C2ST MMD-O MMD-D

0.588 0.171 0.452 0.316 0.744



Ablation vs classifier-based testsAblation vs classifier-based tests

Cross-entropy Max power

Dataset Sign Lin Ours Sign Lin Ours

Blobs 0.84 0.94 0.90 – 0.95 0.99

High-  Gauss. mix. 0.47 0.59 0.29 – 0.64 0.66

Higgs 0.26 0.40 0.35 – 0.30 0.40

MNIST vs GAN 0.65 0.71 0.80 – 0.94 1.00
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But…But…
What if you don't have much data for your testing problem?

Need enough data to pick a good kernel

Also need enough test data to actually detect the di�erence

Best split depends on best kernel's quality / how hard to �nd

Don't know that ahead of time; can't try more than one
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Meta-testingMeta-testing
One idea: what if we have related problems?

Similar setup to meta-learning:

(from )Wei+ 2018

https://arxiv.org/abs/1805.04288
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Meta-testing for CIFAR-10 vs CIFAR-10.1Meta-testing for CIFAR-10 vs CIFAR-10.1
CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031

Where do we get related data from?

One option: set up tasks to distinguish classes of CIFAR-10

(airplane vs automobile, airplane vs bird, ...)
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One approach (MAML-like)One approach (MAML-like)

 is, e.g., 5 steps of

gradient descent

we learn the

initialization, maybe

step size, etc

This works, but not as well as we'd hoped… 

Initialization might work okay on everything, not really adapt



Another approach: Meta-MKLAnother approach: Meta-MKL

Inspired by classic

multiple kernel

learning

Only need to learn

linear combination 

on test task:

much easier
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Theoretical analysis for Meta-MKLTheoretical analysis for Meta-MKL
Same big-O dependence on test task size 😐

But multiplier is much better: 

based on number of meta-training tasks, not on network size

Coarse analysis: assumes one meta-tasks is “related” enough

We compete with picking the single best related kernel

Haven't analyzed meaningfully combining related kernels

(yet!)



Results on CIFAR-10.1Results on CIFAR-10.1
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But...But...
Sometimes we know ahead of time that there are di�erences

that we don't care about

In the MNIST GAN criticism, initial attempt just picked out

that the GAN outputs numbers that aren't one of the 256

values MNIST has

Can we �nd a kernel that can distinguish  from ,

but can't distinguish  from ?

Also useful for fair representation learning

e.g. can distinguish “creditworthy” vs not,

can't distinguish by race
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High on one power, low on anotherHigh on one power, low on another

Choose  with 

First idea: 

No good: doesn't balance power appropriately

Second idea: 

Can estimate  inside the optimization

Better, but tends to “stall out” in minimizing 
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Block estimator Block estimator [[ ]]

Use previous  on  blocks, each of size 

Final estimator: average of each block's estimate

Each block has previous asymptotics

Central limit theorem across blocks

Power is 

Zaremba+ NeurIPS-13Zaremba+ NeurIPS-13

https://arxiv.org/abs/1307.1954
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MMD-B-FairMMD-B-Fair

Choose  as 

 is the power of a test with  blocks of size 

We don't actually use a block estimator computationally

,  have nothing to do with minibatch size

Representation learning: 

Deep kernel is 

 could be deep itself, with adversarial optimization

For now, just Gaussians with di�erent lengthscales
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AdultAdult

Shapes3DShapes3D

: : 

: : 





Multiple targets / sensitive attributesMultiple targets / sensitive attributes

power on minibatches
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Remaining challengesRemaining challenges
MMD-B-Fair:

When  and  are very correlated

For attributes with many values (use HSIC?)

Meta-testing: more powerful approaches, better analysis

When , can we tell how they're di�erent?

Methods so far: low- , and/or points w/ large critic value

Avoid the need for data splitting (selective inference)

 gave one method, but very limitedKübler+ NeurIPS-20

https://arxiv.org/abs/2006.02286


A good takeawayA good takeaway
Combining a deep architecture with a kernel machine that takes the

higher-level learned representation as input can be quite powerful.

— Y. Bengio & Y. LeCun (2007), “ ”Scaling Learning Algorithms towards AI

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf

