Are these datasets the same? Learning kernels for efficient and fair two-sample tests

Danica J. Sutherland (she/her)

University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

TrustML - 15 Feb 2022

- The textbook ML setting:
 - Train on i.i.d. samples from some distribution, $X_i \sim \mathbb{P}$
 - Training error \approx test error on \mathbb{P}
 - So our model should be good on more samples from \mathbb{P}

- The textbook ML setting:
 - Train on i.i.d. samples from some distribution, $X_i \sim \mathbb{P}$
 - Training error \approx test error on \mathbb{P}
 - So our model should be good on more samples from \mathbb{P}
- Really:

- The textbook ML setting:
 - Train on i.i.d. samples from some distribution, $X_i \sim \mathbb{P}$
 - Training error \approx test error on \mathbb{P}
 - So our model should be good on more samples from \mathbb{P}
- Really:
 - Train on "i.i.d. samples from some distribution, $X_i \sim \mathbb{P}''$

- The textbook ML setting:
 - Train on i.i.d. samples from some distribution, $X_i \sim \mathbb{P}$
 - Training error \approx test error on \mathbb{P}
 - So our model should be good on more samples from \mathbb{P}
- Really:
 - Train on "i.i.d. samples from some distribution, $X_i \sim \mathbb{P}^{\prime\prime}$
 - Training error might vaguely correlate with test error on \mathbb{P}

- The textbook ML setting:
 - Train on i.i.d. samples from some distribution, $X_i \sim \mathbb{P}$
 - Training error \approx test error on \mathbb{P}
 - So our model should be good on more samples from \mathbb{P}
- Really:
 - Train on "i.i.d. samples from some distribution, $X_i \sim \mathbb{P}''$
 - Training error might vaguely correlate with test error on \mathbb{P}
 - Deploy it on some distribution Q, might be sort of like P
 and probably changes over time...

Based on samples $\{X_i\} \sim \mathbb{P}$ and $\{Y_j\} \sim \mathbb{Q}$:

• How is \mathbb{P} different from \mathbb{Q} ?

Based on samples $\{X_i\} \sim \mathbb{P}$ and $\{Y_j\} \sim \mathbb{Q}$:

• How is \mathbb{P} different from \mathbb{Q} ?

Based on samples $\{X_i\} \sim \mathbb{P}$ and $\{Y_j\} \sim \mathbb{Q}$:

- How is P different from Q?
- Is \mathbb{P} close enough to \mathbb{Q} for our model?

Based on samples $\{X_i\} \sim \mathbb{P}$ and $\{Y_j\} \sim \mathbb{Q}$:

- How is \mathbb{P} different from \mathbb{Q} ?
- Is \mathbb{P} -close enough to \mathbb{Q} -for our model?

Based on samples $\{X_i\} \sim \mathbb{P}$ and $\{Y_j\} \sim \mathbb{Q}$:

- How is \mathbb{P} different from \mathbb{Q} ?
- Is \mathbb{P} -close enough to \mathbb{Q} -for our model?
- Is $\mathbb{P} = \mathbb{Q}$?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$ • Do smokers/non-smokers get different cancers?

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{C}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match \mathbb{P}_{data} ?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match \mathbb{P}_{data} ?
- Independence testing: is P(X, Y) = P(X)P(Y)?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

$$H_0:\mathbb{P}=\mathbb{Q} \qquad H_1:\mathbb{P}
eq \mathbb{Q}$$

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

$$H_0: \mathbb{P} = \mathbb{Q} \qquad H_1: \mathbb{P} \neq \mathbb{Q}$$

- Reject H_0 if test statistic $\hat{T}(X,Y)>c_lpha$

 Need a \hat{T} to estimate the difference between distributions, based on samples

Need a \hat{T} to estimate the difference between distributions, based on samples

Our choice of \hat{T} : the Maximum Mean Discrepancy (MMD)

Need a \hat{T} to estimate the difference between distributions, based on samples

Our choice of \hat{T} : the Maximum Mean Discrepancy (MMD)

This is a *kernel-based* distance between distributions

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
ight)$

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Can avoid explicit $\phi(x)$; instead $k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Can avoid explicit $\phi(x)$; instead $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
- "Kernelized" algorithms access data only through k(x,y)

$$f(x) = \langle w, \phi(x)
angle_{\mathcal{H}} = \sum_{i=1}^n lpha_i k(X_i, x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
 ight)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Can avoid explicit $\phi(x)$; instead $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
- "Kernelized" algorithms access data only through k(x,y)

$$f(x) = \langle w, \phi(x)
angle_{\mathcal{H}} = \sum_{i=1}^n lpha_i k(X_i, x)$$

• $\|f\|_{\mathcal{H}} = \sqrt{lpha^{\mathsf{T}} K lpha}$ gives kernel notion of smoothness

• Ex: Gaussian RBF

$$k(x,y) = \exp \left(-rac{\left\| x-y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF

$$k(x,y) = \exp\left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp \left(-rac{\left\| x-y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp\left(-rac{\left\|x-y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp\left(-rac{\left\|x-y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp\left(-rac{\left\|x-y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp\left(-rac{\left\|x-y
ight\|^2}{2\sigma^2}
ight)$$

$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} [f(X)] - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} [f(Y)]$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

The sup is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[f(t)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(t)]$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} [f(X)] - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} [f(Y)]$$

The sup is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[f(t)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(t)]$

$\mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X')+k(Y,Y')-2k(X,Y) ight]$

 $\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} [f(X)] - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} [f(Y)]$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \sup_{X \sim \mathbb{P}} \mathbb{E}\left[f(X)
ight] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}}] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}}] \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}}] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} igg\langle f, \mathbb{E}_{X \sim \mathbb{P}}[arphi(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[arphi(Y)] igr
angle_{\mathcal{H}} \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}}] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}_{X \sim \mathbb{P}}[arphi(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[arphi(Y)]
ight
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} \end{aligned}$$

$$egin{aligned} ext{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[f(X)
ight] - \mathbb{E}\left[f(Y)
ight]
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[\langle f, arphi(X)
angle_{\mathcal{H}}
ight] - \mathbb{E}\left[\langle f, arphi(Y)
angle_{\mathcal{H}}
ight]
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}\left[arphi(X)
ight] - \mathbb{E}\left[arphi(Y)
ight]
ight
angle_{\mathcal{H}}
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} = \left\|\mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight\|_{\mathcal{H}} \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \sup_{X \sim \mathbb{P}} [f(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [\langle f, \varphi(X)
angle_{\mathcal{H}}] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [\langle f, \varphi(Y)
angle_{\mathcal{H}}] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [\varphi(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [\varphi(Y)]
ight
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} = \left\| \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k \right\|_{\mathcal{H}} \ &\leq \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} = \left\| \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight\|_{\mathcal{H}} \ &\langle \mu_{\mathbb{P}}^k, \mu_{\mathbb{Q}}^k
angle_{\mathcal{H}} = \mathop{\mathbb{E}}_{\substack{X \sim \mathbb{P}\\ Y \sim \mathbb{Q}}} \langle \varphi(X), \varphi(Y)
angle_{\mathcal{H}} = \mathop{\mathbb{E}}_{\substack{X \sim \mathbb{P}\\ Y \sim \mathbb{Q}}} k(X, Y) \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \sup_{X \sim \mathbb{P}} \mathbb{E}\left[f(X)
ight] - \mathbb{E}\left[f(Y)
ight]
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[\langle f, arphi(X)
angle_{\mathcal{H}}
ight] - \mathbb{E}\left[\langle f, arphi(Y)
angle_{\mathcal{H}}
ight]
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}\left[arphi(X)
ight] - \mathbb{E}\left[arphi(Y)
ight]
ight
angle_{\mathcal{H}}
ight. \\ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} = \left\|\mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight\|_{\mathcal{H}}
ight. \\ &\leq \mu_{\mathbb{P}}^k, \mu_{\mathbb{Q}}^k
angle_{\mathcal{H}} = \mathbb{E}\left[\mathcal{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left[\mathbb{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left[\mathbb{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left[\mathbb{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(X), arphi(Y)
ight
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(Y)\right
ight
angle_{\mathcal{H}} + \mathbb{E}\left(arphi(Y)\right
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(Y)\right
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(Y)\right
angle_{\mathcal{H}} + \mathbb{E}\left(arphi(Y)\right
angle_{\mathcal{H}} = \mathbb{E}\left(arphi(Y)\right
angle_{\mathcal{H}} + \mathbb{E}\left(arphe)(arphi(Y)\right
angle_{\mathcal{H}} + \mathbb{E$$

 $\mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X')+k(Y,Y')-2k(X,Y)
ight]$

Estimating MMD

 $\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)]$

 $\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}}{Y\sim\mathbb{Q}}}[k(X,Y)]$

 $\widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}}{Y\sim\mathbb{Q}}}[k(X,Y)] \ & \frown \ 2 \end{aligned}$$

 $\widehat{\mathrm{MMD}}_{k}(X,Y) = \operatorname{mean}(K_{XX}) + \operatorname{mean}(K_{YY}) - 2\operatorname{mean}(K_{XY})$

K_{XX}

$$\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)]$$

 $\widetilde{\mathrm{MMD}}_k(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

 K_{XX}

$$K_{YY}$$

1.0	0.2	0.6	· ()	1.0	0.8	0.7
0.2	1.0	0.5		0.8	1.0	0.6
0.6	0.5	1.0	, Cana <u>–</u> marc),	0.7	0.6	1.0

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathop{\mathrm{mean}}(K_{XY}) \end{aligned}$$

1.0	0.2	0.6	stand and standing of the stan	1.0	0.8	0.7		0.3	0.1	0.2
0.2	1.0	0.5		0.8	1.0	0.6	· ()	0.2	0.3	0.3
0.6	0.5	1.0	(Case _ see .),	0.7	0.6	1.0	(<u>Case</u> _sec.),	0.2	0.1	0.4

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

. .

• $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
angle$

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

- $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
 angle$
- If $k(x,y) = x^{\mathsf{T}}y$, $\varphi(x) = x$, then the MMD is distance between means

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

- $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
 angle$
- If $k(x,y) = x^{\mathsf{T}}y$, $\varphi(x) = x$, then the MMD is distance between means
- Many kernels: infinite-dimensional ${\mathcal H}$

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: \widehat{\mathrm{nMMD}}^2$ converges in distribution
 - $H_1: \sqrt{n} (\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: n\widehat{\mathrm{MMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: \widehat{\mathrm{nMMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: \widehat{\mathrm{nMMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually
- Need enormous n if kernel is bad for problem

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$
- With $k(x,y)=rac{1}{4}f(x)f(y)$ where $f(x)\in\{-1,1\}$, get $\widehat{\mathrm{MMD}}(X,Y)=\left|\hat{T}(X,Y)-rac{1}{2}
 ight|$

• $k(x,y)=rac{1}{4}f(x)f(y)$ is one form of *deep kernel*

- $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_\psi(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$

- $k(x,y)=rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_\psi(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$
- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$

- $k(x,y)=rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_\psi(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$
- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$
 - Same idea as NNGP approximation

- $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_\psi(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$
- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$
 - Same idea as NNGP approximation
- Generalize to a **deep kernel**:

$$k_\psi(x,y) = \kappa\left(\phi_\psi(x),\phi_\psi(y)
ight)$$

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y)$$

• Final function in \mathcal{H}_ψ will be $af_\psi(x)$

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y) + 1$$

- Final function in \mathcal{H}_ψ will be $af_\psi(x)+b$

• Take
$$k_\psi(x,y)=rac{1}{4}f_\psi(x)f_\psi(y)+1$$

- Final function in \mathcal{H}_ψ will be $af_\psi(x)+b$
- With logistic loss: this is Platt scaling

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y) + 1$$

- Final function in \mathcal{H}_ψ will be $af_\psi(x)+b$
- With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo^{*1} **Geoff Pleiss**^{*1} **Yu Sun**^{*1} **Kilian Q. Weinberger**¹

• This definitely does *not* say that deep learning is (even approximately) a kernel method

- This definitely does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]

Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

- This definitely does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning [Submitted on 30 Nov 2020] Every Model Learned by Gradient Descent Is Approximately a Kernel Machine Pedro Domingos

• We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]

- This definitely does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning [Submitted on 30 Nov 2020] Every Model Learned by Gradient Descent Is Approximately a Kernel Machine Pedro Domingos

- We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]
- But deep kernel learning ≠ traditional kernel models
 - exactly like how usual deep learning ≠ linear models

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term usually dominates

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Use $\widetilde{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_1}$ from U-statistic theory

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_1}$ from U-statistic theory
- Can show uniform $\mathcal{O}_P(n^{-rac{1}{3}})$ convergence of estimator

Blobs dataset

Blobs kernels

Blobs results

Investigating a GAN on MNIST

CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:

ME	SCF	C2ST	MMD-O	MMD-D
0.588	0.171	0.452	0.316	0.744

Ablation vs classifier-based tests

	Cross-entropy			Max power		
Dataset	Sign	Lin	Ours	Sign	Lin	Ours
Blobs	0.84	0.94	0.90	_	0.95	0.99
High- d Gauss. mix.	0.47	0.59	0.29	-	0.64	0.66
Higgs	0.26	0.40	0.35	-	0.30	0.40
MNIST vs GAN	0.65	0.71	0.80	_	0.94	1.00

• What if you don't have much data for your testing problem?

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference
- Best split depends on best kernel's quality / how hard to find

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference
- Best split depends on best kernel's quality / how hard to find
 - Don't know that ahead of time; can't try more than one

Meta-testing

• One idea: what if we have *related* problems?

Meta-testing

- One idea: what if we have *related* problems?
- Similar setup to meta-learning:

Meta-testing for CIFAR-10 vs CIFAR-10.1

- CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031
- Where do we get related data from?

Meta-testing for CIFAR-10 vs CIFAR-10.1

- CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031
- Where do we get related data from?
- One option: set up tasks to distinguish classes of CIFAR-10 (airplane vs automobile, airplane vs bird, ...)

One approach (MAML-like)

One approach (MAML-like)

This works, but not as well as we'd hoped... Initialization might work okay on everything, not really adapt

Another approach: Meta-MKL

Inspired by classic multiple kernel learning

Only need to learn linear combination β_i on test task: much easier

Testing Samples

Meta-Samples

Theoretical analysis for Meta-MKL

- Same big-O dependence on test task size 😐
- But multiplier is *much* better: based on number of meta-training tasks, not on network size

Theoretical analysis for Meta-MKL

- Same big-O dependence on test task size 😐
- But multiplier is *much* better: based on number of meta-training tasks, not on network size
- Coarse analysis: assumes one meta-tasks is "related" enough
 - We compete with picking the single best related kernel
 - Haven't analyzed meaningfully combining related kernels (yet!)

Results on CIFAR-10.1

Methods	$m_{tr} = 100$			$m_{tr} = 200$			
	$m_{te} = 200$	$m_{te} = 500$	$m_{te} = 900$	$m_{te} = 200$	$m_{te} = 500$	$m_{te} = 900$	
ME	0.084	$0.096 \scriptstyle \pm 0.016$	$0.160{\scriptstyle \pm 0.035}$	$0.104 \scriptstyle \pm 0.013$	$0.202 \scriptstyle \pm 0.020$	$0.326 \scriptstyle \pm 0.039$	
SCF	0.047±0.013	$0.037 \scriptstyle \pm 0.011$	$0.047 \scriptscriptstyle \pm 0.015$	$0.026 \scriptstyle \pm 0.009$	$0.018 \scriptstyle \pm 0.006$	$0.026 \scriptstyle \pm 0.012$	
C2ST-S	0.059	$0.062 \scriptstyle \pm 0.007$	$0.059 \scriptstyle \pm 0.007$	$0.052 \scriptstyle \pm 0.011$	$0.054 \scriptstyle \pm 0.011$	$0.057 \scriptstyle \pm 0.008$	
C2ST-L	0.064	$0.064{\scriptstyle\pm0.006}$	$0.063 \scriptstyle \pm 0.007$	$0.075 \scriptstyle \pm 0.014$	$0.066 \scriptstyle \pm 0.011$	$0.067 \scriptstyle \pm 0.008$	
MMD-O	0.091	0.141 ± 0.009	$0.279 \scriptstyle \pm 0.018$	$0.084 \scriptstyle \pm 0.007$	$0.160{\scriptstyle \pm 0.011}$	$0.319 \scriptstyle \pm 0.020$	
MMD-D	0.104±0.007	$0.222{\scriptstyle\pm0.020}$	$0.418 \scriptstyle \pm 0.046$	$0.117 \scriptstyle \pm 0.013$	$0.226 \scriptstyle \pm 0.021$	$0.444 \scriptstyle \pm 0.037$	
AGT-KL	$0.170{\scriptstyle \pm 0.032}$	$0.457 \scriptstyle \pm 0.052$	$0.765 \scriptstyle \pm 0.045$	$0.152_{\pm 0.023}$	0.463 ± 0.060	$0.778 \scriptstyle \pm 0.050$	
Meta-KL	0.245±0.010	$0.671 \scriptstyle \pm 0.026$	$0.959{\scriptstyle\pm0.013}$	$0.226 \scriptstyle \pm 0.015$	$0.668 \scriptstyle \pm 0.032$	$0.972 \scriptstyle \pm 0.006$	
Meta-MKL	$0.277 \scriptscriptstyle \pm 0.016$	$0.728 \scriptstyle \pm 0.020$	$0.973 \scriptstyle \pm 0.008$	$0.255 \scriptscriptstyle \pm 0.020$	$0.724 \scriptscriptstyle \pm 0.026$	$0.993_{\pm 0.003}$	

• Sometimes we know ahead of time that there are differences that we don't care about

- Sometimes we know ahead of time that there are differences that we don't care about
 - In the MNIST GAN criticism, initial attempt just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has

- Sometimes we know ahead of time that there are differences that we don't care about
 - In the MNIST GAN criticism, initial attempt just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that *can* distinguish \mathbb{P}^t from \mathbb{Q}^t , but *can't* distinguish \mathbb{P}^s from \mathbb{Q}^s ?

- Sometimes we know ahead of time that there are differences that we don't care about
 - In the MNIST GAN criticism, initial attempt just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that *can* distinguish \mathbb{P}^t from \mathbb{Q}^t , but *can't* distinguish \mathbb{P}^s from \mathbb{Q}^s ?
- Also useful for **fair representation learning**

- Sometimes we know ahead of time that there are differences that we don't care about
 - In the MNIST GAN criticism, initial attempt just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that *can* distinguish \mathbb{P}^t from \mathbb{Q}^t , but *can't* distinguish \mathbb{P}^s from \mathbb{Q}^s ?
- Also useful for **fair representation learning**
 - e.g. can distinguish "creditworthy" vs not, can't distinguish by race

High on one power, low on another

Choose k with $\min_k
ho_k^s -
ho_k^t$

High on one power, low on another Choose k with $\min_k \rho_k^s - \rho_k^t$ • First idea: $ho = rac{(\mathrm{MMD})^2}{\sigma_{H_1}}$ High on one power, low on another Choose k with $\min_k \rho_k^s - \rho_k^t$ • First idea: $\rho = \frac{(\text{MMD})^2}{\sigma_{H_1}}$ • No good: doesn't balance power appropriately

High on one power, low on another Choose k with $\min_k
ho_k^s -
ho_k^t$ • First idea: $ho = rac{(\mathrm{MMD})^2}{\sigma_{H_1}}$ No good: doesn't balance power appropriately • Second idea: $ho = \Phi\left(rac{\sqrt{n}(\mathrm{MMD})^2 - c_lpha}{\sigma_{H_1}}
ight)$

High on one power, low on another Choose k with $\min_k
ho_k^s -
ho_k^t$ • First idea: $ho = rac{(\mathrm{MMD})^2}{\sigma_{H_1}}$ No good: doesn't balance power appropriately • Second idea: $ho = \Phi\left(rac{\sqrt{n}(\mathrm{MMD})^2 - c_lpha}{\sigma_{H_1}}
ight)$ • Can estimate c_{α} inside the optimization

High on one power, low on another Choose k with $\min_k
ho_k^s -
ho_k^t$ • First idea: $ho = rac{(\mathrm{MMD})^2}{\sigma_{H_1}}$ No good: doesn't balance power appropriately • Second idea: $ho = \Phi\left(rac{\sqrt{n}(\mathrm{MMD})^2 - c_lpha}{\sigma_{H_1}}
ight)$ • Can estimate c_{α} inside the optimization

• Better, but tends to "stall out" in minimizing ho_k^s

• Use previous $\widehat{\mathrm{MMD}}$ on b blocks, each of size B

• Final estimator: average of each block's estimate

• Use previous $\widehat{\mathrm{MMD}}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
 - Each block has previous asymptotics

• Use previous $\widehat{\mathrm{MMD}}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
 - Each block has previous asymptotics
 - Central limit theorem across blocks

• Use previous $\widehat{\mathrm{MMD}}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
 - Each block has previous asymptotics
 - Central limit theorem across blocks

- Power is
$$ho=\Phi\left(\sqrt{bB}rac{\mathrm{MMD}^2}{\sigma_{H_1}^2}-\Phi^{-1}(1-lpha)
ight)$$

• Choose k as $\min_k
ho_k^s -
ho_k^t$

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally
 - *b*, *B* have *nothing to do* with minibatch size

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally
 - *b*, *B* have *nothing to do* with minibatch size
- Representation learning: $\min_{\phi} \max_{\kappa} \rho^s_{\kappa \circ \phi} \rho^t_{\kappa \circ \phi}$

MMD-B-Fair

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally
 - *b*, *B* have *nothing to do* with minibatch size
- Representation learning: $\min_{\phi} \max_{\kappa}
 ho^s_{\kappa \circ \phi}
 ho^t_{\kappa \circ \phi}$
 - Deep kernel is $[\kappa \circ \phi](x,y) = \kappa(\phi(x),\phi(y))$

MMD-B-Fair

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally
 - *b*, *B* have *nothing to do* with minibatch size
- Representation learning: $\min_{\phi} \max_{\kappa}
 ho^s_{\kappa \circ \phi}
 ho^t_{\kappa \circ \phi}$
 - Deep kernel is $[\kappa \circ \phi](x,y) = \kappa(\phi(x),\phi(y))$
 - κ could be deep itself, with adversarial optimization

MMD-B-Fair

- Choose k as $\min_k
 ho_k^s
 ho_k^t$
 - ho is the power of a test with b blocks of size B
 - We *don't* actually use a block estimator computationally
 - *b*, *B* have *nothing to do* with minibatch size
- Representation learning: $\min_{\phi} \max_{\kappa} \rho^s_{\kappa \circ \phi} \rho^t_{\kappa \circ \phi}$
 - Deep kernel is $[\kappa \circ \phi](x,y) = \kappa(\phi(x),\phi(y))$
 - κ could be deep itself, with adversarial optimization
 - For now, just Gaussians with different lengthscales

Adult

Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2390574

Adult

Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2390574

Shapes3D

 \mathcal{I}^{ι} :

 \mathbb{k}^{s} .

 \mathbb{P}^{s} .

ci-ratio	Method	Pr(target)↑	$\Pr(\text{sensitive}) \downarrow$	Pr(sensitive) fine-tuned↓
	Laftr	0.2500	0.6100	$1.000 \ (\sigma = 0.111)$
(0.1, 0.1)	Cfair	0.2500	0.6071	0.8929 ($\sigma = 0.087$)
	Ffvae	0.1785	0.6428	$1.000 \ (\sigma = 0.0695)$
	Ours	1.000	0.2500	$0.9642 \ (\sigma = 0.007)$
	Laftr	0.285	0.607	$1.000 \ (\sigma = 0.237)$
(0.33, 0.66)	Cfair	0.2857	0.6071	$1.000 \ (\sigma = 0.234)$
	Ffvae	0.9642	1.000	$1.000 \ (\sigma = 0.075)$
	Ours	1.000	0.5614	0.6842 ($\sigma = 0.005$)

(a) Adult dataset: Our method outperforms all others even when additional layers are trained to maximize the sensitive power (albeit with smaller bandwidths in the under-represented scenario).

ci-ratio	Method Pr(target)↑	Pr(target)↑	$\Pr(\text{sensitive})\downarrow$	Pr(sensitive)	
	Method	Method Pr(target)		fine-tuned↓	
	Laftr	1.000	1.000	$1.000 \ (\sigma = 0.001)$	
(0.1, 0.1)	Cfair	1.000	1.000	$1.000 \ (\sigma = 0.003)$	
	Ffvae	0.9574	0.9787	$1.000 \ (\sigma = 0.1002)$	
	Ours	1.000	0.0744	0.9625 ($\sigma = 0.0205$)	
	Laftr	1.000	1.000	$1.000 \ (\sigma = 0.006)$	
(0.9, 0.1)	Cfair	1.000	1.000	$1.000 \ (\sigma = 0.005)$	
	Ffvae	0.8723	0.8723	$1.000 \ (\sigma = 0.092)$	
	Ours	0.1383	1.000	$1.000 \ (\sigma = 0.006)$	

(b) **3DShapes dataset:** Our method is able to outperform others in the under-represented case, but the highly correlated scenario of **ci-ratio**=(0.9,0.1) is a failure case.

Multiple targets / sensitive attributes

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: low-d, and/or points w/ large critic value

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: low-d, and/or points w/ large critic value

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: low-d, and/or points w/ large critic value

• Avoid the need for data splitting (selective inference)

- MMD-B-Fair:
 - When $m{s}$ and $m{t}$ are very correlated
 - For attributes with many values (use HSIC?)
- Meta-testing: more powerful approaches, better analysis
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: low-d, and/or points w/ large critic value

- Avoid the need for data splitting (selective inference)
 - Kübler+ NeurIPS-20 gave one method, but very limited

A good takeaway

Combining a deep architecture with a kernel machine that takes the higher-level learned representation as input can be quite powerful. — Y. Bengio & Y. LeCun (2007), "Scaling Learning Algorithms towards AI"