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features/covariates , labels/targets 

Want  such that  for new samples from :

e.g. squared loss: 

Standard approaches based on empirical risk minimization:
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None* bound .
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[ ], [ ], [ ], [ ], 

[ ], [ ], [ ], [ ], many more…

None* bound .

Is it possible to �nd such a bound?
Can uniform convergence explain interpolation learning?

Belkin+ NeurIPS 2018 Belkin+ AISTATS 2018 Belkin+ 2019 Hastie+ 2019

Muthukumar+ JSAIT 2020 Bartlett+ PNAS 2020 Liang+ COLT 2020 Montanari+ 2019

*One exception-ish [ ]:
relates  to a surrogate predictor,

shows uniform convergence for the surrogate

Negrea/Dziugaite/Roy, ICML 2020
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A more specific version of the questionA more specific version of the question
We're only going to worry about consistency:

…in a non-realizable setting: 

Is it possible to show consistency of an interpolator with

This requires tight constants!
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A more refined uniform convergence analysis?A more refined uniform convergence analysis?
Theorem (à la [ ]):

For each , let ,

 a natural consistent interpolator,
and . Then, almost surely,

([ ] had a very similar result for )

Natural interpolators:  doesn't change if  �ips to . Examples: 
, , , 

 with each  convex, 
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A more refined uniform convergence analysis?A more refined uniform convergence analysis?
Theorem (à la [ ]):

For each , let ,

 a natural consistent interpolator,
and . Then, almost surely,

Proof shows that for most , 
there's a typical predictor  (in ) 

that's good on most inputs ( ), 
but very bad on speci�cally  ( )

Nagarajan/Kolter, NeurIPS 2019
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So, what are we left with?So, what are we left with?
Convergence of surrogates [ ]?

Nice, but not really the same thing…

Give up?
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One-sided uniform convergence?One-sided uniform convergence?
We don't really care about small , big …. 

Could we bound  instead of ?

Existing uniform convergence proofs are “really” about 
 [ ]

Strongly expect still  for norm balls in our testbed
 instead of 

Not possible to show  is big for all 

If  consistent and , use 

Nagarajan/Kolter, NeurIPS 2019
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A broader view of uniform convergenceA broader view of uniform convergence
So far, used 

But we only care about interpolators. How about

Is this “uniform convergence”?

It's the standard notion for realizable ( ) analyses…

Are there analyses like this for ?
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Main resultMain result
Theorem: If ,

Con�rms speculation based on  assumption

Shows consistency with uniform convergence (of interpolators)

New result for error of not-quite-minimal-norm interpolators
Norm  is asympotically consistent

Norm  is at worst 
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What does  look like?

 is the plane 

Intersection of -ball with -hyperplane:
-ball centered at 

Can write as  
where  is any interpolator,  is basis for 
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Quadratic program, one quadratic constraint: strong duality

Exactly equivalent to problem in one scalar variable:

Can analyze this for di�erent choices of …
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Very useful for lower bounds! [ ]Muthukumar+ JSAIT 2020
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Analyzing dual with ,
get without any distributional assumptions that
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Error up to Error up to 

In our setting:

 is consistent, because 

Plugging in: 

…and we're done!

Analyzing dual with  for , , get in general:

 if  is consistent
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On Uniform Convergence and Low-Norm Interpolation Learning
Zhou, Sutherland, and Srebro [NeurIPS 2020] [ ]

“Regular” uniform convergence can't explain consistency of 
Uniform convergence over norm ball can't show any learning

An “interpolating” uniform convergence bound does
Shows low norm is su�cient for interpolation learning here

Predicts exact worst-case error as norm grows

Optimistic/interpolating rates might be able to explain interpolation
learning more broadly

Need to get the constants on leading terms exactly right!

Analyzing generalization gap via duality may be broadly applicable
Can always get upper bounds via weak duality

arXiv:2006.05942
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