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Supervised learning
e Given i.id.samples S = {(x;,y;)}~, ~ D"
» features/covariates X; € Rd, labels/targets y; € R

e Want f such that f(x) = y for new samples from D:

f* = argmin | Lp(f) := (x,}I’E‘;ND L(f(x),y)

= e.g. squared loss: L(g,y) = (§ — y)*

e Standard approaches based on empirical risk minimization:

f ~ argmin | Lg (f) := %ZL(f(Xi)ayi)
i=1 _
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Statistical learning theory
We have lots of bounds like: with probability > 1 — 9,

C
sup | Lp (f) — Ls (f)| < \/ i)
feF n

Then for large n, Lp(f) =~ Ls(f), sof ~ f*

Lp(f) < Ls(f) +31€1£\Lz>(f) — Ls(f)]



Interpolation learning

Classical wisdom: “a model with zero training
error is overfit to the training data and will
typically generalize poorly”

Trevor Hastie
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Interpolation learning

Classical wisdom: “a model with zero training e
error is overfit to the training data and will
typica”y generalize pOO rly" Data Mining, Inference, and Prediction

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (f ) — O, LD (f ) ~ 11%
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Interpolation learning

Classical wisdom: “a model with zero training e
error is overfit to the training data and will
typica”y generalize poo rly" Data Mining, Inference, and Prediction

(when Lp (f*) > 0)

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (f ) — O, L’D (f ) ~ 11%
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Interpolation does not overfit even for
very nolsy data

All methods (except Bayes optimal) have zero training square loss.
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Not a question of improving bounds

correct C]:. 5 nontrivial
’
0.7 < <09 n— oo

n

Misha Belkin
Simons Institute
July 2019

There are no bounds like this and no reason they
should exist.

A constant factor of 2 invalidates the bound!
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Generalization theory for interpolation?

What theoretical analyses do we have?

VC-dimension/Rademacher complexity/covering/

Cannot deal with interpolated classifiers
Generalization gap cannot be bound w
Regularization-type analyses ATikhonov,

Diverge as A—0 for fi

Algorithmic sta

Does not

Classical smoothing methods (i.e., Nadaraya-Watson).

ply when empirical risk is zero,

— Lp(f) <

en Bayes risk is non-zero.

gin bounds.

. Co WYSIWYG
empirical risk is zero.
bounds:
2
early stopping/SGD, etc.) 2b_'training loss
&

expected loss

expected risk nonzero.

Most classical analyses do not support interpolaticn. —— expected loss

But 1-NN!

(Also Hilbert regression Scheme,

et al. 98)]) &

optimal loss

Lp (f) < Lp (}*) + bound

[Devroye,

Oracle bounds

bound

Misha Belkin
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Generalization theory for interpolation?

What theoretical analyses do we have?

A

- I‘} -

Lots of recent theoretical work on interpolation.
[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],

[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...

None* bound sup e = |Lp (f) — Ls (f)|-

s it possible to find such a bound?
Can uniform convergence explain interpolation learning?

B
But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 58]) ‘ =

optimal loss

Lp (f) < LD(_'_]C*) + bound
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A
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Lots of recent theoretical work on interpolation.
[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],

[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...

None* bound sup e 7 |Lp (f) — Ls (f)|-

s it possible to find such a bound?
Can uniform convergence explain interpolation learning?

R B
But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 58]) =
optimal loss a
—

*One exception-ish [Negrea/Dziugaite/Roy, ICML 2020]:

relates f to a surrogate predictor,
shows uniform convergence for the surrogate
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A more specific version of the question

We're only going to worry about consistency:.

A

ElLp(f) — Lo(f*)] = 0

..in a non-realizable setting: Lp(f*) > 0

s it possible to show consistency of an interpolator with

Lp(f) < Ls(f) +sup |Lp(f) — Ls(£)|?

N — feF
0

This requires tight constants!
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Our testbed problem

“signal”, dg “junk”, d; — 00

(xg,Wg™)

A\ controls scale of junk: El|x7[|? = Ay,
Linear regression: L(y,§) = (y — 4)*

Min-norm interpolator: Wy = argmin||w|j; = X'y
Xw=y
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Theorem: If A,, = o(n),

lim lim E| sup |Lp(w)— Ls(w)|| = oo.
nreods=eo | wl <Vl

Proof idea:;

Lp(w) = (w—w")"S(w—w*") + Lp(w*)
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Theorem: If A,, = o(n),

lim lim E| sup |Lp(w)— Ls(w)|| = oo.
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Proof idea:;
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l'w|| < B}isnogood. Maybe {w : A < ||w|| < B}?

{w:

Uniform convergence may be unable to explain
generalization in deep learning

Vaishnavh Nagarajan J. Zico Kolter
Department of Computer Science Department of Computer Science
Carnegie Mellon University Carnegie Mellon University &
Pittsburgh, PA Bosch Center for Artificial Intelligence
vaishnavh@cs.cmu.edu Pittsburgh, PA

zkolter@cs.cmu. edu
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A more refined uniform convergence analysis?

Theorem (a la [Nagarajan/Kolter, NeurIPS 2019]):
For each § € (0, %) etPr(SeS,s5) >1—4,

W a natural consistent interpolator,
and W, s = {w(S) : S € S, 5} Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.
n—00 d ;—>00 SES, s WEW,, 5

(INegrea/Dziugaite/Roy, ICML 2020] had a very similar result for w pzy)

Natural interpolators: wg doesn't change if X ; flips to —X ;. Examples:
Wyy,  argmin||wl|;,  argmin||w — w"||o,
w: Xw=y w: Xw=y
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A more refined uniform convergence analysis?
Theorem (a la [Nagarajan/Kolter, NeurlPS 2019]):
For each § € (0, %) etPr(SeS,s5) >1—4,

W a natural consistent interpolator,
and W, s = {Ww(S) : S € S, 5} Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.

N—00d;—00 SESn,(g WEWn,(g

Proof shows that for most S,
there's a typical predictor w (in W, 5)

that's good on most inputs (Lp (W) — o2),
but very bad on specifically S (Ls (W) — 40?)
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So, what are we left with?

e Convergence of surrogates [Negrea/Dziugaite/Roy, ICML 2020]?
= Nice, but not really the same thing...

e Give up?
e Or...
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One-sided uniform convergence?

We don't really care about small Lp, big Lg....
Could we bound sup Lp — Lg instead of sup|Lp — Lg |?

e Existing uniform convergence proofs are “really” about
|Lp — Lg | [Nagarajan/Kolter, NeurlPS 2019]

e Strongly expect still oo for norm balls in our testbed

* Amax (2 — 3) instead of |2 — 3|
e Not possible to show sup . Lp — Lg is big for all F

« If f consistent and infr Lg(f) > 0, use
F={f:Lp(f) < Lp(f*) +e€ns}


https://arxiv.org/abs/1902.04742/

A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B



A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup  |Lp(w) — Ls(w)|?
[wi<B, Ls (w)=0



A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup | Lp (w) |7
|w||<B, Lg(w)=0



A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup | Lp (w) |7
|w||<B, Lg(w)=0

Is this “uniform convergence”?



A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup | Lp (w) |7
|w||<B, Lg(w)=0

Is this “uniform convergence”?

It's the standard notion for realizable (Lp (w*) = 0) analyses...



A broader view of uniform convergence

Foundations of
Machine Learning scond cion

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

It's the stand

In the example of axis-aligned rectangles that we examined, the hypothesis hg
returned by the algorithm was always consistent, that is, it admitted no error on
the training sample S. In this section, we present a general sample complexity
bound, or equivalently, a generalization bound, for consistent hypotheses, in the

case where the cardinality |H| of the hypothesis set is finite. Since we consider

WU consistent hypotheses, we will assume that the target concept ¢ is in H.

Theorem 2.1 Learning bounds finite [/, consistent case

Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that
for any target concept ¢ € H and i.1.d. sample S returns a consistent hypothesis hs:
f‘f[h S ) 0. Then, for any €,6 > 0, the inequality Prg..p» :H[fu} 4 r: > 1 — 6 holds

if
1
L >

f

(hm H +]ug;). (2.8)

T

This sample complexity result admits the follounng equivalent statement as a gener-

alization bound: for any €, > 0, with probability at least 1 — 4,

l l
- OpF T (8] . .2
R(he) (I; H|+1 gd) (2.9)

m

Proof Fix ¢ > 0. We do not know which consistent hypothesis hg € H is selected
by the algorithm A. This hypothesis further depends on the training sample S.
Therefore, we need 1o give a uniform convergence bound, that is, a bound that
holds for the set of all consistent hypotheses, which a fortiori includes hg. Thus,



https://cs.nyu.edu/~mohri/mlbook/

A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup | Lp (w) |7
|w||<B, Lg(w)=0

Is this “uniform convergence”?

It's the standard notion for realizable (Lp (w*) = 0) analyses...



A broader view of uniform convergence

So far, used Lp(w) — Lg(w) < sup |Lp(w) — Ls(w)|
lwi<B

But we only care about interpolators. How about

sup | Lp (w) |7
|w||<B, Lg(w)=0

Is this “uniform convergence”?

It's the standard notion for realizable (Lp (w*) = 0) analyses...

Are there analyses like this for Lp (w*) > 0?



Optimistic rates

Applying [Srebro/sridharan/Tewari 2010]: for all |w|| < B,
&, high-prob bound on max;—1 ., ||%;||’

Lp(w) — Ls(w) < Op (Bif" | \/LS (w) ij”)
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Optimistic rates

Applying [Srebro/sSridharan/Tewari 2010]: for all |w|| < B,
&, high-prob bound on max;—1 ., ||%;||

Lo(w) — Ls(w) < Oy (Bff“ /s (w) 2

¢ < 200,000 log®(n)
B,
SUD||w||<B, g (w)=0 LD (W) < c—== + 0p(1)

fl <\, <n B=|Wun|, — cLp(w*)

But if we suppose ¢ = 1, would get a novel prediction:

sp  Lp(w) < a? [0 + op(1)

lw|[<allwpnll, L (w)=0


https://arxiv.org/abs/https://arxiv.org/pdf/1009.3896.pdf/

Main result

Theorem: If A, = o(n),

lim lim E sup |Lp(w)

nmeodsroo | |lwl <allwal|

LS (W)ZO




Iim lim E
n—oo —00

Main result

Theorem: If A, = o(n),

sup
[w|<a| Wyl
Lg (w)=0

LD (W)

= o Lp(w*)

e Confirms speculation based on ¢ = 1 assumption

e Shows consistency with uniform convergence (of interpolators)

e New result for error of not-quite-minimal-norm interpolators
= Norm ||[W || + const is asympotically consistent

= Norm 1.1||w || is at worst 1.21 Lp (w™)
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What does {w : ||w|| < B, Lg(w) = 0} look like?

{w: Lg(w) = %HXW —y||* = 0}istheplane Xw =y

Intersection of d-ball with (d — n)-hyperplane:
centered at Wy

Canwrite as {w + Fz : z € R%™", ||W + Fz| < B}
where W is any interpolator, F' is basis for ker(X)
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Can change variables in SUDy,. |w(<B, Lg (w)=0 LD (W) to
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Decomposition via strong duality

Can change variables in SUDy,. |w(<B, L (w)=0 LD (W) to

Lp(w™) + sup (W+Fz —w*)' 2(W+ Fz — v
z:||W+Fz|? <B?

Quadratic program, one quadratic constraint: strong duality
Exactly equivalent to problem in one scalar variable:

Lp(%)+ inf [[FT[ué — B0 —w)|| o+ (B — [[w]f*)

]
u>|FT=F| —F XF)

Can analyze this for different choices of w...
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The minimal-risk interpolator

Wyr = argmin Lp(w)
w: Xw=y

=w"' + 21 XT(XZI X)) (Y - xw*)
In Gaussian least squares generally, have that

d—1
d—1—n

ELD(WMR) — LD(W*)

so W g is consistent iff n = o(d).

Very useful for lower bounds! [Muthukumar+ JSAIT 2020]


https://arxiv.org/abs/1903.09139

Restricted eigenvalue under interpolation

kx (X) = sup W' Zw
Iw|=1, Xw=0

Roughly, “how much” of 3 is “missed” by X



Consistency up to HW’MR H

Analyzing dual with W yg,

get without any distributional assumptions t
A 1<p<4 A X
sup  Lp(w) = Lp(Wur) + Brx () |[[Warl® —

[w | <[[W gl
LS (W):O




Consistency up to HW’MR H

Analyzing dual with W g,
get without any distributional assumptions that

1<B<4
sup Lp(w) = Lp(Wyr) + Brx(X) [||VAVMR||2 — |VAVMN||2]
W <|lwarl (amount of missed energy) - (available norm)

Lg(w)=0



Consistency up to HWMR H

Analyzing dual with W R,

get without any distributional assumptions that
1< <4
sup  Lp(w) = Lp(Wur) + Brx(Z) [[[Wurl* — W]
W <|lwarll (amount of missed energy) - (available norm)

Lg(w)=0

If Wr consistent, everything smaller-norm also consistent iff 8 term — 0



Consistency up to HWMR H

Analyzing dual with W R,

get without any distributional assumptions that
1< <4
sup  Lp(w) = Lp(Wur) + Brx(Z) [[[Wurl* — W]
W <|lwarll (amount of missed energy) - (available norm)

Lg(w)=0

If Wr consistent, everything smaller-norm also consistent iff 8 term — 0

In our setting:

W g is consistent, Lp(Wygr) — Lp(w™)



Consistency up to HWMR H

Analyzing dual with W R,

get without any distributional assumptions that
1<p<4
sup  Lp(w) = Lp(Wur) + Brx () [[Warll® — [[Wawl|*]

W <|lwarll (amount of missed energy) - (available norm)
Lg(w)=0

If Wr consistent, everything smaller-norm also consistent iff 8 term — 0

In our setting:
W g is consistent, Lp(Wygr) — Lp(w™)

A, A ) 0'2d5
kx(X) ~ — E[|[Wuzl® — [[Wan|?] = )\

+o0(1)



Consistency up to HWMR H

Analyzing dual with W g,
get without any distributional assumptions that

1<B<4
sup Lp(w) = Lp(Wur) + Brx (%) [||VAVMR||2 - |VAVMN||2]
W <|lwarll (amount of missed energy) - (available norm)

Lg (w)=0
If Wr consistent, everything smaller-norm also consistent iff 8 term — 0

In our setting:
W g is consistent, Lp(Wygr) — Lp(w™)
A, o’dg

kx(X) ~ — E[|[Wuzl® — [[Wan|?] = )\

+o0(1)

Plugging in: ESHPHWHSHVA"MR”, Lg (w)=0 LD (W) — LD (W*)
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Error up to o || Wy ||
Analyzing dual with Wy for w, a > 1, get in general:

sup  Lp(w) = Lp(Wuw) + (o — 1) 6x(Z) [Waw||* + R

w||<alw A . .
| E;(J):%N“ R, — 0if Wy is consistent

In our setting:

W is consistent, because |[Wyn|| < [|[Wurl||
E rx (2) [|[Wuwl* = 0® = Lp(w*)
Plugging in: Esup”WHSa”VA"MN”a Lg(w)=0 Lp (W) — o? Lp (W*)

...anhd we're done!



On Uniform Convergence and Low-Norm Interpolation Learning
Zhou, Sutherland, and Srebro [NeurlIPS 2020] [arXiv:2006.05942]

“Regular” uniform convergence can't explain consistency of Wy

= Uniform convergence over norm ball can't show any learning

An “interpolating” uniform convergence bound does
= Shows low norm is sufficient for interpolation learning here

= Predicts exact worst-case error as norm grows

Optimistic/interpolating rates might be able to explain interpolatio
learning more broadly
= Need to get the constants on leading terms exactly right!

Analyzing generalization gap via duality may be broadly applicable
= Can always get upper bounds via weak duality

N


https://arxiv.org/abs/2006.05942

