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Two-sample testing

e Given samples from two unknown distributions

— ——

Do smokers/non-smokers get different cancers?

Do Canadians have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [MmDiff2]

Are these neurons' behavior affected by this odor?

Do these dob and birthday columns mean the same thing?

Does my generative model

Independence testing: is P(X,

match Pyai4?

) = P(X)P(Y)?
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Given samples from two unknown distributions
X ~P ~

Question: is P = ()7

Hypothesis testing approach:
Hy:P= H,:P 75

Reject null hypothesis Hy if test statistic T(X, ) > ca



probability density

What's a hypothesis test again?

0.0

0.1 0.2 0.3 0.4

0.5



probability density

What's a hypothesis test again?

0.0

0.1

—_— P=0
— P#Q

0.3

0.4

0.5



probability density

What's a hypothesis test again?

don't reject Hy ¢, reject Hg (say P#Q)

—_— P=0
— P#Q

0.0

0.1 0.2 0.3 0.4

0.5



probability density

What's a hypothesis test again?

don't reject Hy ¢, reject Hg (say P#Q)

— PZ0

false rejection rate: want = a

0.0

0.1 0.2 0.3 0.4

0.5



probability density
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don't reject Hy ¢, reject Hg (say P#Q)
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A

Need Prg, (T(X, )>ca)§a
Xo X3 Xy4 Xs Y1 Yo Y5 Y4

~ ~
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e We need a T’(X, Y) that's large if P #£ ), small if P = Q)

X Y

Train a classifier f

Evaluate accuracy of f on test set

e Can choose T'(X, V) as the accuracy of f on the test set

= |f P = (), classification is impossible, and so T ~ Binomial(n, %)

A

e Usually performs better: T'(X, V) = mean|f(z)| — mean|f(y)]
€ Xtest YE Ytest

» If P = (), T — normal distribution (but permuting on test set is better)
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A more general framework

e C2ST-L: T'(X, V) = mean|f(z)] — mean|f(y)

€ X test
= f(x) € Ris a classifier's “logit”:
log probability  is from [P rather than (), plus const

mean|f(z)] — mean|f(v)]

e Basically the same: T(X, ) = |
TE Xtest S

e What if we use more general features of the data?

T(Xa ):

meanp(c)] - meanlip(s)|

wEXtest E
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Difference between mean embeddings

2
T(X,V)? =

mean|p(z)] — mean|p(y)]

TE X test

= mean[p(z) - p(z')] — meean[go(a:) - ()] + mean[p(y) - (/)]

!

rFT ; +

Only use data through ¢(x) - ¢(v) = k(z, v): can kernelize!

K Kx

A M| 10
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What's a kernel again?
Linear classifiers: § () = sign(f(z)), f(z) = w' (z,1)

Use a “richer” x:
fl)=w' (z,2%,1) = w' p(z)

Can avoid explicit ¢(z); instead k(z, y) = (¢(z), ©(Y))n

“Kernelized” algorithms access data only through k(x, y)

Induces a notion of “smoothness” on functions, || f|lx = vVaT Ka
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Reproducing Kernel Hilbert Space (RKHS)

e Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

9
|z — y|
202

k(ma y) — €Xp

o Some functions with small || f||#:
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Maximum Mean Discrepancy (MMD)

MMD(P,0) = max E [£(X)] ~ E [f(V)

The max is achieved by f(t) o< Exp|k(X,t)] — Ev.o|k(Y,1)]

MMD?*(P,Q) = E [k(X,X')+k(,Y") - 2k(X,Y)]

X, X' ~P

V.,V ~Q
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MMD-based tests
If k is characteristic, MMD(IP, ) = 0iff P =

Efficient permutation testing for MMD (X, V)

—— 2
» Hy: nMMD converges in distribution

= H;:\/n(MMD — MMD#) asymptotically normal
Any characteristic kernel gives consistent test...eventually

Need enormous n if the kernel is bad for this problem!
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Deep learning and deep kernels

e C2ST-Lis basically MMD with k(z,y) = f(x) f(y)
= fisa(learned) deep net - a learned kernel

e We can generalize some more to deep kernels:

ky(z,y) = & (py(x), ¢y (y))

= ¢ is a deep net, maps data points to R”

= K is a simple kernel on RP

» k(u,v) =u-vgvesMMDas ||E ¢(z) — E ¢(v)]||
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Optimizing power of MMD tests

/\2

e Asymptotics of MMD give us immediately that

0 n MMD?
Pr (nMMD > ca) ~ & (‘/_ Co )

H o-Hl \/ﬁo-Hl

MMD, o, , ¢ are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /o,

—— R
e Use MMD from before, get oy, from U-statistic theory

1
e Can show uniform Op(n 3 ) convergence of estimator
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Average test power
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Investigating a GAN on MNIST

103

| dataset images
A GAN samples

H
"

w

more like GAN

more like dataset —
MMD? = 0. 0001



CIFAR-10 vs CIFAR-10.1

i —\ r—-1¢
: s ) {-q.r - “ r‘ " e i",
|/ ’ “ Y H " g
‘ \.-Oa-v - 5. ‘“_ . ; J y .._'\_‘ — =5

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:
ME SCF C2SsT MMD-O MMD-D

0.588 0.171 0.452 0.316 0.744




Ablation vs classifier-based tests

Cross-entropy Max power
Dataset Sign Lin Ours Sign Lin Ours
Blobs 0.84 0.94 0.90 - 095 0.99
High-d Gauss. mix. 0.47 0.59 0.29 - 0.64 0.66
Higgs 0.26 0.40 0.35 - 030 0.40

MNIST vs GAN 0.e5 0.71 0.80 - 094 1.00
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But...

What if you don't have much data for your testing problem?
Need enough data to pick a good kernel
Also need enough test data to actually detect the difference

Best split depends on best kernel's quality / how hard to find
= Don't know that ahead of time; can't try more than one
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Meta-testing

e One idea: what if we have related problems?

e Similar setup to meta-learning:

Exemplars : Evaluation data (Query set)

/
? ? )

-- b z:_.‘

Exemplars Evaluation data (Query set)

-a

_ Exemplars Evaluation data (Query set) }

- |
(from Wei+ 2018)



https://arxiv.org/abs/1805.04288
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Meta-testing for CIFAR-10 vs CIFAR-10.]
e CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031

e Where do we get related data from?

e One option: set up tasks to distinguish classes of CIFAR-10
= airplane vs automobile, airplane vs bird, ...
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One approach (MAML-like)

‘H W
]
__|__  Dataspliting |
v [ E\; ¢ [ E\; Ag is, e.g., 5 steps of gradient descent

input
1 P 1 we learn the initialization, maybe step

_O_Ut&, L —{MMD Test] size, etc

. Samples from P . Samples from Q D E Training Samples E E Testing Samples Meta-Samples

This works, but not as well as we'd hoped...
Initialization might work okay on everything, not really adapt



Another approach: Meta-MKL

I’ S
il W
| Data Splitting | Inspired by classic multiple kernel
a4 " g O learnin
‘\;_ _;,"Learn weights ‘\g_ _D_,l‘ &
maxj
e ‘ Zﬁi‘“ Only need to learn linear combination
\AD=3 ke )0 &% B; on test task:
. I R
: | | much easier
: learnl’% !
! NJ, [MMD Test]

——————————

. Samples from P . Samples from Q D E Training Samples E E Testing Samples Meta-Samples
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Theoretical analysis for Meta-MKL

e Same big-O dependence on test task size @

e But multiplier is much better:
based on number of meta-training tasks, not on network size

e Coarse analysis: assumes one meta-tasks is “related” enough
= We compete with picking the single best related kernel

= Haven't analyzed meaningfully combining related kernels (yet!)



Results on CIFAR-10.]

my, = 100 my, = 200

Methods
mye = 200 my, = 500 my, = 900 my = 200 my, = 500 my = 900
ME 0.08410000 0.096x0016 0.160+0055  0.104w0013  0.20220020 0.326=0039
SCF 0.047:003  0.037z001  0.047x00i5  0.02620000 0.01840006 0.026+0.012
C25T-S 0.0590000  0.06220007  0.059+0007  0.092+0011  0.0544001  0.057=0008
C25T-L | 0.06440000 0.06440006 0.063+0000  0.07520014  0.06620011  0.067 20008
MMD-O | 0.091c001  0.14140000 0.279200is  0.08440007  0.160+0011  0.319+0.02
MMD-D | 0.1041000r  0.22240020 0.41840006  0.11720013  0.226200m  0.44420037
AGT-KL | 0.170s002 0.457=0052  0.765+0055  0.152+0023 0.46320000 0.778x0.050
Meta-KL 0.245:0000 0.671x0026 0.959:0.013 0.226+0015  0.6680032  0.972:0.006
Meta-MKL|0.277+0.016 0.7280.020 0.973:0.008 0.255:0.020 0.72410.026 0.9930.003
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But...

e Sometimes we already know there are differences we don't care about
= |In the MNIST GAN criticism, first just picked out that the GAN outputs
numbers that aren't one of the 256 values MNIST has

e Can we find a kernel that can distinguish P! from QF,

but can't distinguish P from (Q°?

e Also useful for fair representation learning
= e.g. can distinguish “creditworthy” vs not, but can't distinguish by race
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High on one power, low on another
Choose k with miny, p§ — pt
(MMD)?

OH,
= No good: doesn't balance power appropriately

vn(MMD)? — ¢, )

O'Hl

e Firstidea: p =

e Secondidea: p = @ (

= Can estimate ¢, inside the optimization

= Better, but tends to “stall out” in minimizing p;,
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Block estimator [Zaremba+ NeurlPS-13]

e Use previous MMD on b blocks, each of size B

e Final estimator: average of each block's estimate
= Each block has previous asymptotics

s Central limit theorem across blocks

MMD?
e Powerisp =& (\/bB . d1(1 - a))

0'H1



https://arxiv.org/abs/1307.1954
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MMD-B-Fair

e Choose k as miny, pj — pt
= pis the power of a test with b blocks of size B

= We don't actually use a block estimator computationally

= b, B have nothing to do with minibatch size

e Representation learning: ming (maX,{, piocb — INaXg Pfioqg)

= Deep kernelis |k 0 @|(z,y) = k(P(z), P(y))

= K could be deep itself, with adversarial optimization

= For now, just Gaussians with different lengthscales



Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds $50K/yr based on census data. Also known as "Census

Income" dataset.

Data Set Characteristics:

Multivariate

Number of Instances:

48842

Area:

Social

Attribute Characteristics:

Categorical, Integer

Number of Attributes:

14

Date Donated

1996-05-01

Associated Tasks:

Classification

Missing Values?

Yes

Number of Web Hits:

2390574




Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds $50K/yr based on census data. Also known as "Census

Income" dataset.

Data Set Characteristics: || Multivariate Number of Instances: || 48842 | Area: Social
Attribute Characteristics: || Categorical, Integer | Number of Attributes: | 14 Date Donated 1996-05-01
Associated Tasks: Classification Missing Values? Yes Number of Web Hits: | 2390574

Featured Prediction Competition

$500,000 Prize Money

Heritage Health Prize

Identify patients who will be admitted to a hospital within the next year using historical
claims data. (Enter by 06:59:59 UTC Oct 4 2012)

1,350 teams - 10 years ago




Learned representations

MMD-B-Fair (DP) MMD-B-Fair (Eq)

Figure 4: t-SNE visualizations of Adult representations, colored by target attribute (top) and sensitive attribute (bottom).



Quality of transfer learning

MMD-B-Fair | MMD-B-Fair

Transfer Label LAFTR | CFAIR | FCRL | sIPM
(DP) (Eq)
acc 57.2 62.5 58.0 72.8 71.3 70.3
MSC2a3 DP 52.3 65.1 99.2 69.3 72.2 84.5
Eq 57.4 70.1 98.0 69.9 71.8 86.6
acc 72.9 72.2 53.9 72.4 70.7 69.4
METAB3 DP 52.3 65.1 97.7 54.5 65.6 82.1
Eq 61.3 77.1 97.6 63.4 74.6 92.1
acc 66.4 65.9 59.3 70.6 67.5 67.8
ARTHSPHIN | DP 52.3 65.1 98.0 74.6 83.0 87.7
Eq 54.9 70.1 98.1 76.7 84.9 90.0
acc 64.4 61.9 60.1 68.0 67.1 67.3
NEUMENT DP 52.3 65.1 99.1 72.9 86.8 94.5
Eq 54.9 69.7 97.5 73.2 86.7 95.4
acc 71.0 67.3 69.3 73.5 73.0 72.5
MISCHRT DP 52.3 65.1 98.6 85.0 87.2 96.4
Eq 59.4 79.0 98.2 88.5 88.6 97.5

Table 1: Using Heritage Health representations to predict
various downstream tasks. Red marks the best result per
row, blue second-best, and green third-best.



e Check if your data is different than it used to be!
e Pretty good method: train a classifier, check how accurate

e More powerful: use an optimized kernel method

A good takeaway

Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.
— Y. Bengio & Y. LeCun (2007), “Scaling Learning Algorithms towards Al”


http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf




