Are these datasets the same? Two-sample testing for data scientists

Danica J. Sutherland (she)

University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X
- Pretend there's a \mathbb{P} that X is an i.i.d. sample from

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X
- Pretend there's a \mathbb{P} that X is an i.i.d. sample from
- If it works on X, maybe it sorta works on \mathbb{P}

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X
- Pretend there's a \mathbb{P} that X is an i.i.d. sample from
- If it works on X, maybe it sorta works on \mathbb{P}
- Deploy on something that's maybe a distribution \mathbb{Q}
- which might be sort of like \mathbb{P}

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X
- Pretend there's a \mathbb{P} that X is an i.i.d. sample from
- If it works on X, maybe it sorta works on \mathbb{P}
- Deploy on something that's maybe a distribution \mathbb{Q}
- which might be sort of like \mathbb{P}
- but probably changes over time...

Data drift

- Textbook machine learning:
- Train on i.i.d. samples from some distribution, $X_{i} \sim \mathbb{P}$
- If it works on X, probably works on new samples from \mathbb{P}
- Really:
- Train on X
- Pretend there's a \mathbb{P} that X is an i.i.d. sample from
- If it works on X, maybe it sorta works on \mathbb{P}
- Deploy on something that's maybe a distribution \mathbb{Q}
- which might be sort of like \mathbb{P}
- but probably changes ove time...

This talk

Based on samples $\left\{X_{i}\right\} \sim \mathbb{P}$ and $\left\{Y_{j}\right\} \sim \mathbb{Q}$:

- How is \mathbb{P} different from \mathbb{Q} ?

This talk

Based on samples $\left\{X_{i}\right\} \sim \mathbb{P}$ and $\left\{Y_{j}\right\} \sim \mathbb{Q}$:

- Howis \mathbb{P} different from?

This talk

Based on samples $\left\{X_{i}\right\} \sim \mathbb{P}$ and $\left\{Y_{j}\right\} \sim \mathbb{Q}$:

- Howis \mathbb{P} different from?
- Is \mathbb{P} close enough to \mathbb{Q} for our model?

This talk

Based on samples $\left\{X_{i}\right\} \sim \mathbb{P}$ and $\left\{Y_{j}\right\} \sim \mathbb{Q}$:

- Howis \mathbb{P} different from?
- ts \mathbb{P} close n ugh to \mathbb{C} four model?

This talk

Based on samples $\left\{X_{i}\right\} \sim \mathbb{P}$ and $\left\{Y_{j}\right\} \sim \mathbb{Q}$:

- Howis \mathbb{P} different from?
- Is IP close enough e for our moder
- Is $\mathbb{P}=\mathbb{Q}$?

Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?

Two-sample testing

- Given samples from two unknown distributions
$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$
- Do smokers/non-smokers get different cancers?

Two-sample testing

- Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?

Two-sample testing

- Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?

Two-sample testing

- Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?

Two-sample testing

- Given samples from two unknown distributions

$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [mMDiff2]

Two-sample testing

- Given samples from two unknown distributions

$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Are these neurons' behavior affected by this odor?

Two-sample testing

- Given samples from two unknown distributions

$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Are these neurons' behavior affected by this odor?
- Do these dob and birthday columns mean the same thing?

Two-sample testing

- Given samples from two unknown distributions

$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000 s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [mMDiff2]
- Are these neurons' behavior affected by this odor?
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match $\mathbb{P}_{\text {data }}$?

Two-sample testing

- Given samples from two unknown distributions

$X \sim \mathbb{P} \quad Y \sim \mathbb{D}$

- Do smokers/non-smokers get different cancers?
- Do Canadians have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000 s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [mMDiff2]
- Are these neurons' behavior affected by this odor?
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match $\mathbb{P}_{\text {data }}$?
- Independence testing: is $P(X, Y)=P(X) P(Y)$?

Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?

Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?
- Hypothesis testing approach:

$$
H_{0}: \mathbb{P}=\mathbb{Q} \quad H_{1}: \mathbb{P} \neq \mathbb{Q}
$$

Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?
- Hypothesis testing approach:

$$
H_{0}: \mathbb{P}=\mathbb{Q} \quad H_{1}: \mathbb{P} \neq \mathbb{Q}
$$

- Reject null hypothesis H_{0} if test statistic $\hat{T}(X, Y)>c_{\alpha}$

What's a hypothesis test again?

Permutation testing to find c_{α}

$$
X_{3} \quad X_{4} \quad X_{5} \quad Y_{1} \quad Y_{2} \quad Y_{3} \quad Y_{4} \quad Y_{5}
$$

Permutation testing to find c_{α}

$$
\begin{gathered}
\text { Need } \operatorname{Pr}_{H_{0}}\left(\hat{T}(X, Y)>c_{\alpha}\right) \leq \alpha \\
X_{1} X_{2}\left|X_{3}\right| X_{4} \mid X_{5} \\
c_{\alpha}: 1-\alpha \text { th quantile of }\left\{\begin{array}{rlllll}
\\
Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5}
\end{array}\right.
\end{gathered}
$$

Permutation testing to find c_{α}

$$
\begin{aligned}
& \text { Need } \operatorname{Pr}_{H_{0}}\left(\hat{T}(X, Y)>c_{\alpha}\right) \leq \alpha \\
& \begin{array}{l|l|l|l|lllll|l|l}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & & Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5}
\end{array} \\
& c_{\alpha}: 1-\alpha \text { th quantile of }\left\{\hat{T}\left(\tilde{X}_{1}, \tilde{Y}_{1}\right),\right. \\
& \text { \} }
\end{aligned}
$$

Permutation testing to find c_{α}

$$
\begin{gathered}
\text { Need } \operatorname{Pr}_{H_{0}}\left(\hat{T}(X, Y)>c_{\alpha}\right) \leq \alpha \\
X_{1} X_{2}\left|X_{3}\right| X_{4} \mid X_{5} \quad \\
c_{1}: 1-\alpha \text { th quantile of }\left\{\hat { T } \left(Y_{2} \mid Y_{3}\right.\right. \\
\left.c_{1}, Y_{4}\right), Y_{5} \\
\left.Y_{1}\left(\tilde{X}_{2}, \tilde{Y}_{2}\right), \quad\right\}
\end{gathered}
$$

Permutation testing to find c_{α}

$$
\begin{gathered}
\text { Need } \operatorname{Pr}_{H_{0}}\left(\hat{T}(X, Y)>c_{\alpha}\right) \leq \alpha \\
X_{1} \\
X_{2}
\end{gathered} X_{3} \quad X_{4} \quad X_{5} \quad Y_{1} \quad Y_{2} \quad Y_{3} \quad Y_{4} \quad Y_{5}
$$

Classifier two-sample tests

- We need a $\hat{T}(X, Y)$ that's large if $\mathbb{P} \neq \mathbb{Q}$, small if $\mathbb{P}=\mathbb{Q}$

- Can choose $\hat{T}(X, Y)$ as the accuracy of f on the test set

Classifier two-sample tests

- We need a $\hat{T}(X, Y)$ that's large if $\mathbb{P} \neq \mathbb{Q}$, small if $\mathbb{P}=\mathbb{Q}$

- Can choose $\hat{T}(X, Y)$ as the accuracy of f on the test set
- If $\mathbb{P}=\mathbb{Q}$, classification is impossible, and so $\hat{T} \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)$

Classifier two-sample tests

- We need a $\hat{T}(X, Y)$ that's large if $\mathbb{P} \neq \mathbb{Q}$, small if $\mathbb{P}=\mathbb{Q}$

- Can choose $\hat{T}(X, Y)$ as the accuracy of f on the test set
- If $\mathbb{P}=\mathbb{Q}$, classification is impossible, and so $\hat{T} \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)$
- Usually performs better: $\hat{T}(X, Y)=\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[f(y)]$

Classifier two-sample tests

- We need a $\hat{T}(X, Y)$ that's large if $\mathbb{P} \neq \mathbb{Q}$, small if $\mathbb{P}=\mathbb{Q}$

- Can choose $\hat{T}(X, Y)$ as the accuracy of f on the test set
- If $\mathbb{P}=\mathbb{Q}$, classification is impossible, and so $\hat{T} \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)$
- Usually performs better: $\hat{T}(X, Y)=\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[f(y)]$
- If $\mathbb{P}=\mathbb{Q}, \hat{T} \rightarrow$ normal distribution (but permuting on test set is better)

A more general framework

- C2ST-L: $\hat{T}(X, Y)=\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[f(y)]$
- $f(x) \in \mathbb{R}$ is a classifier's "logit":
\log probability x is from \mathbb{P} rather than \mathbb{Q}, plus const

A more general framework

- C2ST-L: $\hat{T}(X, Y)=\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[f(y)]$
- $f(x) \in \mathbb{R}$ is a classifier's "logit":
\log probability x is from \mathbb{P} rather than \mathbb{Q}, plus const
- Basically the same: $\hat{T}(X, Y)=\left|\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[f(y)]\right|$

A more general framework

- C2ST-L: $\hat{T}(X, Y)=\underset{x \in X_{\text {test }}}{\operatorname{mean}}[f(x)]-\underset{y \in Y_{\text {test }}}{\operatorname{mean}}[f(y)]$
- $f(x) \in \mathbb{R}$ is a classifier's "logit":
\log probability x is from \mathbb{P} rather than \mathbb{Q}, plus const
- Basically the same: $\hat{T}(X, Y)=\left|\operatorname{mean}_{x \in X_{\text {test }}}[f(x)]-\underset{y \in Y_{\text {test }}}{\operatorname{mean}}[f(y)]\right|$
-What if we use more general features of the data?

$$
\hat{T}(X, Y)=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|
$$

Difference between mean embeddings

$$
\hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2}
$$

Difference between mean embeddings

$$
\begin{aligned}
& \hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2} \\
& \quad=\operatorname{mean}_{x \neq x^{\prime}}\left[\varphi(x) \cdot \varphi\left(x^{\prime}\right)\right]-2 \operatorname{mean}_{x, y}[\varphi(x) \cdot \varphi(y)]+\underset{y \neq y^{\prime}}{\operatorname{mean}}\left[\varphi(y) \cdot \varphi\left(y^{\prime}\right)\right]
\end{aligned}
$$

Difference between mean embeddings

$$
\begin{aligned}
& \hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2} \\
& \quad=\operatorname{mean}_{x \neq x^{\prime}}\left[\varphi(x) \cdot \varphi\left(x^{\prime}\right)\right]-2 \operatorname{mean}_{x, y}[\varphi(x) \cdot \varphi(y)]+\operatorname{mean}_{y \neq y^{\prime}}\left[\varphi(y) \cdot \varphi\left(y^{\prime}\right)\right]
\end{aligned}
$$

Only use data through $\varphi(x) \cdot \varphi(y)=k(x, y)$: can kernelize!

Difference between mean embeddings

$$
\begin{aligned}
& \hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2} \\
& \quad=\underset{x \neq x^{\prime}}{\operatorname{mean}}\left[\varphi(x) \cdot \varphi\left(x^{\prime}\right)\right]-2 \operatorname{mean}_{x, y}[\varphi(x) \cdot \varphi(y)]+\underset{y \neq y^{\prime}}{\operatorname{mean}}\left[\varphi(y) \cdot \varphi\left(y^{\prime}\right)\right]
\end{aligned}
$$

Only use data through $\varphi(x) \cdot \varphi(y)=k(x, y)$: can kernelize!

Difference between mean embeddings

$$
\begin{aligned}
& \hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2} \\
& \quad=\operatorname{mean}_{x \neq x^{\prime}}\left[\varphi(x) \cdot \varphi\left(x^{\prime}\right)\right]-2 \operatorname{mean}_{x, y}[\varphi(x) \cdot \varphi(y)]+\underset{y \neq y^{\prime}}{\operatorname{mean}}\left[\varphi(y) \cdot \varphi\left(y^{\prime}\right)\right]
\end{aligned}
$$

Only use data through $\varphi(x) \cdot \varphi(y)=k(x, y)$: can kernelize!

Difference between mean embeddings

$$
\begin{aligned}
& \hat{T}(X, Y)^{2}=\left\|\operatorname{mean}_{x \in X_{\text {test }}}[\varphi(x)]-\operatorname{mean}_{y \in Y_{\text {test }}}[\varphi(y)]\right\|^{2} \\
& \quad=\underset{x \neq x^{\prime}}{\operatorname{mean}}\left[\varphi(x) \cdot \varphi\left(x^{\prime}\right)\right]-2 \operatorname{mean}_{x, y}[\varphi(x) \cdot \varphi(y)]+\underset{y \neq y^{\prime}}{\operatorname{mean}}\left[\varphi(y) \cdot \varphi\left(y^{\prime}\right)\right]
\end{aligned}
$$

Only use data through $\varphi(x) \cdot \varphi(y)=k(x, y)$: can kernelize!

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

- Can avoid explicit $\varphi(x) ;$ instead $k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}}$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

- Can avoid explicit $\varphi(x)$; instead $k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}}$
- "Kernelized" algorithms access data only through $k(x, y)$

$$
f(x)=\langle w, \varphi(x)\rangle_{\mathcal{H}}=\sum_{i=1}^{n} \alpha_{i} k\left(X_{i}, x\right)
$$

What's a kernel again?

- Linear classifiers: $\hat{y}(x)=\operatorname{sign}(f(x)), f(x)=w^{\top}(x, 1)$
- Use a "richer" x :

$$
f(x)=w^{\top}\left(x, x^{2}, 1\right)=w^{\top} \varphi(x)
$$

- Can avoid explicit $\varphi(x)$; instead $k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}}$
- "Kernelized" algorithms access data only through $k(x, y)$

$$
f(x)=\langle w, \varphi(x)\rangle_{\mathcal{H}}=\sum_{i=1}^{n} \alpha_{i} k\left(X_{i}, x\right)
$$

- Induces a notion of "smoothness" on functions, $\|f\|_{\mathcal{H}}=\sqrt{\alpha^{\top} K \alpha}$

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Some functions with small $\|f\|_{\mathcal{H}}$:

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Some functions with small $\|f\|_{\mathcal{H}}$:

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Some functions with small $\|f\|_{\mathcal{H}}$:

Reproducing Kernel Hilbert Space (RKHS)

- Example: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Some functions with small $\|f\|_{\mathcal{H}}$:

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

$$
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\underset{\substack{X, X^{\prime} \sim \mathbb{P} \\ Y, Y^{\prime} \sim \mathbb{Q}}}{\mathbb{E}}\left[k\left(X, X^{\prime}\right)+k\left(Y, Y^{\prime}\right)-2 k(X, Y)\right]
$$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

$$
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\underset{\substack{X, X^{\prime} \sim \mathbb{P} \\ Y, Y^{\prime} \sim \mathbb{Q}}}{\mathbb{E}}\left[k\left(X, X^{\prime}\right)+k\left(Y, Y^{\prime}\right)-2 k(X, Y)\right]
$$

Maximum Mean Discrepancy (MMD)

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\max _{\|f\|_{\mathcal{H}} \leq 1} \underset{X \sim \mathbb{P}}{\mathbb{E}}[f(X)]-\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)]
$$

The max is achieved by $f(t) \propto \mathbb{E}_{X \sim \mathbb{P}}[k(X, t)]-\mathbb{E}_{Y \sim \mathbb{Q}}[k(Y, t)]$

$$
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\underset{\substack{X, X^{\prime} \sim \mathbb{P} \\ Y, Y^{\prime} \sim \mathbb{Q}}}{\mathbb{E}}\left[k\left(X, X^{\prime}\right)+k\left(Y, Y^{\prime}\right)-2 k(X, Y)\right]
$$

MMD-based tests

- If k is characteristic, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X, Y)$

MMD-based tests

- If k is characteristic, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X, Y)$
- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right)$ asymptotically normal

MMD-based tests

- If k is characteristic, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X, Y)$
- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right)$ asymptotically normal
- Any characteristic kernel gives consistent test

MMD-based tests

- If k is characteristic, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X, Y)$
- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually

MMD-based tests

- If k is characteristic, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X, Y)$
- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually
- Need enormous n if the kernel is bad for this problem!

Deep learning and deep kernels

- C2ST-L is basically MMD with $k(x, y)=f(x) f(y)$
- f is a (learned) deep net - a learned kernel

Deep learning and deep kernels

- C2ST-L is basically MMD with $k(x, y)=f(x) f(y)$
- f is a (learned) deep net - a learned kernel
- We can generalize some more to deep kernels:

$$
k_{\psi}(x, y)=\kappa\left(\phi_{\psi}(x), \phi_{\psi}(y)\right)
$$

Deep learning and deep kernels

- C2ST-L is basically MMD with $k(x, y)=f(x) f(y)$
- f is a (learned) deep net - a learned kernel
- We can generalize some more to deep kernels:

$$
k_{\psi}(x, y)=\kappa\left(\phi_{\psi}(x), \phi_{\psi}(y)\right)
$$

- ϕ is a deep net, maps data points to \mathbb{R}^{D}

Deep learning and deep kernels

- C2ST-L is basically MMD with $k(x, y)=f(x) f(y)$
- f is a (learned) deep net - a learned kernel
- We can generalize some more to deep kernels:

$$
k_{\psi}(x, y)=\kappa\left(\phi_{\psi}(x), \phi_{\psi}(y)\right)
$$

- ϕ is a deep net, maps data points to \mathbb{R}^{D}
- κ is a simple kernel on \mathbb{R}^{D}

Deep learning and deep kernels

- C2ST-L is basically MMD with $k(x, y)=f(x) f(y)$
- f is a (learned) deep net - a learned kernel
- We can generalize some more to deep kernels:

$$
k_{\psi}(x, y)=\kappa\left(\phi_{\psi}(x), \phi_{\psi}(y)\right)
$$

- ϕ is a deep net, maps data points to \mathbb{R}^{D}
- κ is a simple kernel on \mathbb{R}^{D}
- $\kappa(u, v)=u \cdot v$ gives MMD as $\|\mathbb{E} \phi(x)-\mathbb{E} \phi(y)\|$

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\underset{H_{1}}{\operatorname{Pr}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\underset{H_{1}}{\operatorname{Pr}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\underset{H_{1}}{\operatorname{Pr}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_{1}}$ from U-statistic theory

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\operatorname{Pr}_{H_{1}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_{1}}$ from U-statistic theory
- Can show uniform $\mathcal{O}_{P}\left(n^{-\frac{1}{3}}\right)$ convergence of estimator

Blobs dataset

Blobs kernels

Blobs results

Investigating a GAN on MNIST

CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:

ME	SCF	C2ST	MMD-O	MMD-D
0.588	0.171	0.452	0.316	$\mathbf{0 . 7 4 4}$

Ablation vs classifier-based tests

	Cross-entropy		Max power			
Dataset	Sign	Lin	Ours	Sign	Lin	Ours
Blobs	0.84	0.94	0.90	-	0.95	0.99
High- d Gauss. mix.	0.47	0.59	0.29	-	0.64	0.66
Higgs	0.26	0.40	0.35	-	0.30	0.40
MNIST vs GAN	0.65	0.71	0.80	-	0.94	1.00

But...

- What if you don't have much data for your testing problem?

But...

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel

But...

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference

But...

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference
- Best split depends on best kernel's quality / how hard to find

But...

- What if you don't have much data for your testing problem?
- Need enough data to pick a good kernel
- Also need enough test data to actually detect the difference
- Best split depends on best kernel's quality / how hard to find
- Don't know that ahead of time; can't try more than one

Meta-testing

- One idea: what if we have related problems?

Meta-testing

- One idea: what if we have related problems?
- Similar setup to meta-learning:

Meta-testing for CIFAR-10 vs CIFAR-10.1

- CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031
- Where do we get related data from?

Meta-testing for CIFAR-10 vs CIFAR-10.1

- CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031
- Where do we get related data from?
- One option: set up tasks to distinguish classes of CIFAR-10
- airplane vs automobile, airplane vs bird, ...

One approach (MAML-like)

Samples from \mathbb{P}
Samples from \mathbb{Q}

Training SamplesTesting Samples
Meta-Samples

One approach (MAML-like)

This works, but not as well as we'd hoped... Initialization might work okay on everything, not really adapt

Another approach: Meta-MKL

Training Samples

Theoretical analysis for Meta-MKL

- Same big-O dependence on test task size :-
- But multiplier is much better:
based on number of meta-training tasks, not on network size

Theoretical analysis for Meta-MKL

- Same big-O dependence on test task size :)
- But multiplier is much better: based on number of meta-training tasks, not on network size
- Coarse analysis: assumes one meta-tasks is "related" enough
- We compete with picking the single best related kernel
- Haven't analyzed meaningfully combining related kernels (yet!)

Results on CIFAR-10.1

Methods	$m_{t r}=100$			$m_{t r}=200$		
	$m_{t e}=200$	$m_{t e}=500$	$m_{t e}=900$	$m_{t e}=200$	$m_{t e}=500$	$m_{t e}=900$
ME	$0.084_{ \pm 0.009}$	0.096 ± 0.016	$0.160_{ \pm 0.035}$	$0.104_{ \pm 0.013}$	$0.202_{ \pm 0.020}$	$0.326_{ \pm 0.039}$
SCF	$0.047_{ \pm 0.013}$	0.037 ± 0.011	$0.047_{ \pm 0.015}$	$0.026_{ \pm 0.009}$	0.018 ± 0.006	$0.026_{ \pm 0.012}$
C2ST-S	$0.059_{ \pm 0.099}$	$0.062_{ \pm 0.007}$	$0.059_{ \pm 0.007}$	$0.052_{ \pm 0.011}$	$0.054_{ \pm 0.011}$	$0.057{ }_{ \pm 0.008}$
C2ST-L	$0.064_{ \pm 0.009}$	$0.064_{ \pm 0.006}$	$0.063_{ \pm 0.007}$	$0.075{ }_{ \pm 0.014}$	$0.066_{ \pm 0.011}$	$0.067{ }_{ \pm 0.008}$
MMD-O	$0.091_{ \pm 0.011}$	$0.141_{ \pm 0.099}$	$0.279_{ \pm 0.018}$	$0.084_{ \pm 0.007}$	$0.160_{ \pm 0.011}$	$0.319_{ \pm 0.020}$
MMD-D	$0.104_{ \pm 0.007}$	$0.222_{ \pm 0.020}$	$0.418_{ \pm 0.046}$	$0.117_{ \pm 0.013}$	$0.226_{ \pm 0.021}$	$0.444_{ \pm 0.037}$
AGT-KL	$0.170_{ \pm 0.332}$	$0.457_{ \pm 0.052}$	$0.765_{ \pm 0.045}$	$0.152_{ \pm 0.023}$	$0.463_{ \pm 0.060}$	$0.778_{ \pm 0.050}$
Meta-KL	$0.245_{ \pm 0.010}$	$0.671_{ \pm 0.026}$	$0.959_{ \pm 0.013}$	$0.226_{ \pm 0.015}$	$0.668{ }_{ \pm 0.032}$	$0.972_{ \pm 0.006}$
Meta-MKL	$\mathbf{0 . 2 7 7}{ }_{ \pm 0.016}$	$\mathbf{0 . 7 2 8}_{ \pm 0.020}$	$\mathbf{0 . 9 7 3}{ }_{ \pm 0.008}$	$\mathbf{0 . 2 5 5}{ }_{ \pm 0.020}$	$\mathbf{0 . 7 2 4}{ }_{+0.026}$	$\mathbf{0 . 9 9 3}{ }_{ \pm 0.003}$

But...

- Sometimes we already know there are differences we don't care about

But...

- Sometimes we already know there are differences we don't care about
- In the MNIST GAN criticism, first just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has

But...

- Sometimes we already know there are differences we don't care about
- In the MNIST GAN criticism, first just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that can distinguish \mathbb{P}^{t} from \mathbb{Q}^{t}, but can't distinguish \mathbb{P}^{s} from \mathbb{Q}^{s} ?

But...

- Sometimes we already know there are differences we don't care about
- In the MNIST GAN criticism, first just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that can distinguish \mathbb{P}^{t} from \mathbb{Q}^{t}, but can't distinguish \mathbb{P}^{s} from \mathbb{Q}^{s} ?
- Also useful for fair representation learning

But...

- Sometimes we already know there are differences we don't care about
- In the MNIST GAN criticism, first just picked out that the GAN outputs numbers that aren't one of the 256 values MNIST has
- Can we find a kernel that can distinguish \mathbb{P}^{t} from \mathbb{Q}^{t}, but can't distinguish \mathbb{P}^{s} from \mathbb{Q}^{s} ?
- Also useful for fair representation learning
- e.g. can distinguish "creditworthy" vs not, but can't distinguish by race

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

- First idea: $\rho=\frac{(\mathrm{MMD})^{2}}{\sigma_{H_{1}}}$

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

- First idea: $\rho=\frac{(\mathrm{MMD})^{2}}{\sigma_{H_{1}}}$
- No good: doesn't balance power appropriately

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

- First idea: $\rho=\frac{(\mathrm{MMD})^{2}}{\sigma_{H_{1}}}$
- No good: doesn't balance power appropriately
- Second idea: $\rho=\Phi\left(\frac{\sqrt{n}(\mathrm{MMD})^{2}-c_{\alpha}}{\sigma_{H_{1}}}\right)$

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

- First idea: $\rho=\frac{(\mathrm{MMD})^{2}}{\sigma_{H_{1}}}$
- No good: doesn't balance power appropriately
- Second idea: $\rho=\Phi\left(\frac{\sqrt{n}(\mathrm{MMD})^{2}-c_{\alpha}}{\sigma_{H_{1}}}\right)$
- Can estimate c_{α} inside the optimization

High on one power, low on another

Choose k with $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

- First idea: $\rho=\frac{(\mathrm{MMD})^{2}}{\sigma_{H_{1}}}$
- No good: doesn't balance power appropriately
- Second idea: $\rho=\Phi\left(\frac{\sqrt{n}(\mathrm{MMD})^{2}-c_{\alpha}}{\sigma_{H_{1}}}\right)$
- Can estimate c_{α} inside the optimization
- Better, but tends to "stall out" in minimizing ρ_{k}^{s}

Block estimator [Zaremba+ NeurlPS-13]

- Use previous $\widehat{\text { MMD }}$ on b blocks, each of size B

- Final estimator: average of each block's estimate

Block estimator [Zaremba+ NeurlPS-13]

- Use previous $\widehat{\text { MMD }}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
- Each block has previous asymptotics

Block estimator [Zaremba+ NeurlPS-13]

- Use previous $\widehat{\text { MMD }}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
- Each block has previous asymptotics
- Central limit theorem across blocks

Block estimator [Zaremba+ NeurlPS-13]

- Use previous $\widehat{\text { MMD }}$ on b blocks, each of size B

- Final estimator: average of each block's estimate
- Each block has previous asymptotics
- Central limit theorem across blocks
- Power is $\rho=\Phi\left(\sqrt{b B} \frac{\mathrm{MMD}^{2}}{\sigma_{H_{1}}^{2}}-\Phi^{-1}(1-\alpha)\right)$

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally
- b, B have nothing to do with minibatch size

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally
- b, B have nothing to do with minibatch size
- Representation learning: $\min _{\phi}\left(\max _{\kappa} \rho_{\kappa \circ \phi}^{s}-\max _{\kappa} \rho_{\kappa \circ \phi}^{t}\right)$

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally
- b, B have nothing to do with minibatch size
- Representation learning: $\min _{\phi}\left(\max _{\kappa} \rho_{\kappa \circ \phi}^{s}-\max _{\kappa} \rho_{\kappa \circ \phi}^{t}\right)$
- Deep kernel is $[\kappa \circ \phi](x, y)=\kappa(\phi(x), \phi(y))$

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally
- b, B have nothing to do with minibatch size
- Representation learning: $\min _{\phi}\left(\max _{\kappa} \rho_{\kappa \circ \phi}^{s}-\max _{\kappa} \rho_{\kappa \circ \phi}^{t}\right)$
- Deep kernel is $[\kappa \circ \phi](x, y)=\kappa(\phi(x), \phi(y))$
- κ could be deep itself, with adversarial optimization

MMD-B-Fair

- Choose k as $\min _{k} \rho_{k}^{s}-\rho_{k}^{t}$
- ρ is the power of a test with b blocks of size B
- We don't actually use a block estimator computationally
- b, B have nothing to do with minibatch size
- Representation learning: $\min _{\phi}\left(\max _{\kappa} \rho_{\kappa \circ \phi}^{s}-\max _{\kappa} \rho_{\kappa \circ \phi}^{t}\right)$
- Deep kernel is $[\kappa \circ \phi](x, y)=\kappa(\phi(x), \phi(y))$
- κ could be deep itself, with adversarial optimization
- For now, just Gaussians with different lengthscales

Adult Data Set

Download: Data Folder, Data Set Description
Abstract: Predict whether income exceeds $\$ 50 \mathrm{~K} / \mathrm{yr}$ based on census data. Also known as "Census Income" dataset

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2390574

Adult Data Set

Download: Data Folder, Data Set Description
Abstract: Predict whether income exceeds $\$ 50 \mathrm{~K} / \mathrm{yr}$ based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2390574

Featured Prediction Competition

Identify patients who will be admitted to a hospital within the next year using historical claims data. (Enter by 06:59:59 UTC Oct 4 2012)

1,350 teams • 10 years ago

Learned representations

Figure 4: t-SNE visualizations of Adult representations, colored by target attribute (top) and sensitive attribute (bottom).

Quality of transfer learning

Transfer Label		LAFTR	CFAIR	FCRL	sIPM	MMD-B-Fair (DP)	MMD-B-Fair (Eq)
MSC2a3	acc	57.2	62.5	58.0	72.8	71.3	70.3
	DP	52.3	65.1	99.2	69.3	72.2	84.5
	Eq	57.4	70.1	98.0	69.9	71.8	86.6
METAB3	acc	72.9	72.2	53.9	72.4	70.7	69.4
	DP	52.3	65.1	97.7	54.5	65.6	82.1
	Eq	61.3	77.1	97.6	63.4	74.6	92.1
ARTHSPHIN	acc	66.4	65.9	59.3	70.6	67.5	67.8
	DP	52.3	65.1	98.0	74.6	83.0	87.7
	Eq	54.9	70.1	98.1	76.7	84.9	90.0
NEUMENT	acc	64.4	61.9	60.1	68.0	67.1	67.3
	DP	52.3	65.1	99.1	72.9	86.8	94.5
	Eq	54.9	69.7	97.5	73.2	86.7	95.4
MISCHRT	acc	71.0	67.3	69.3	73.5	73.0	72.5
	DP	52.3	65.1	98.6	85.0	87.2	96.4
	Eq	59.4	79.0	98.2	88.5	88.6	97.5

Table 1: Using Heritage Health representations to predict various downstream tasks. Red marks the best result per row, blue second-best, and green third-best.

- Check if your data is different than it used to be!
- Pretty good method: train a classifier, check how accurate
- More powerful: use an optimized kernel method

A good takeaway

Combining a deep architecture with a kernel machine that takes the higher-level learned representation as input can be quite powerful.

- Y. Bengio \& Y. LeCun (2007), "Scaling Learning Algorithms towards Al"

