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Want  such that  for new samples from :

e.g. squared loss: 

Standard approaches based on empirical risk minimization:
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Interpolation learningInterpolation learning

Classical wisdom: “a model with zero training

error is over�t to the training data and will

typically generalize poorly”

(when )

We'll call a model with  an interpolating predictor

; Zhang et al., “Rethinking generalization”, ICLR 2017
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July 2019

Lots of recent theoretical work on interpolation.

[ ], [ ], [ ], [ ], 

[ ], [ ], [ ], [ ], many more…

None* bound .

Is it possible to �nd such a bound?

Can uniform convergence explain interpolation learning?

Belkin+ NeurIPS 2018 Belkin+ AISTATS 2018 Belkin+ 2019 Hastie+ 2019

Muthukumar+ JSAIT 2020 Bartlett+ PNAS 2020 Liang+ COLT 2020 Montanari+ 2019
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Lots of recent theoretical work on interpolation.

[ ], [ ], [ ], [ ], 

[ ], [ ], [ ], [ ], many more…

None* bound .

Is it possible to �nd such a bound?

Can uniform convergence explain interpolation learning?

Belkin+ NeurIPS 2018 Belkin+ AISTATS 2018 Belkin+ 2019 Hastie+ 2019

Muthukumar+ JSAIT 2020 Bartlett+ PNAS 2020 Liang+ COLT 2020 Montanari+ 2019

*One exception-ish [ ]:

relates  to a surrogate predictor,

shows uniform convergence for the surrogate. 

(Also, a few things since our �rst paper.)

Negrea/Dziugaite/Roy, ICML 2020
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A more specific version of the questionA more specific version of the question
Today, we're mainly going to worry about consistency:

…in a noisy setting: 

…for Gaussian linear regression:

Is it possible to show consistency of an interpolator with

This requires tight constants!
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 controls scale of junk: 

Linear regression: 

Min-norm interpolator: 
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A more refined uniform convergence analysis?A more refined uniform convergence analysis?
Theorem (à la [ ]):

In junk features, for each , let ,

 a natural consistent interpolator,

and . Then, almost surely,

([ ] had a very similar result for )

Natural interpolators:  doesn't change if  �ips to . Examples: 

, , , 

 with each  convex, 

Nagarajan/Kolter, NeurIPS 2019
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A more refined uniform convergence analysis?A more refined uniform convergence analysis?
Theorem (à la [ ]):

In junk features, for each , let ,

 a natural consistent interpolator,

and . Then, almost surely,

Proof shows that for most , 

there's a typical predictor  (in ) 

that's good on most inputs ( ), 

but very bad on speci�cally  ( )

Nagarajan/Kolter, NeurIPS 2019
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So, what are we left with?So, what are we left with?
Convergence of surrogates [ ]?

Nice, but not really the same thing…

Only do analyses based on e.g. exact form of ?

We'd like to keep good things about uniform convergence:

Apply to more than just one speci�c predictor

Tell us more about “why” things generalize

Easier to apply without a nice closed form

Or…

Negrea/Dziugaite/Roy, ICML 2020
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A broader view of uniform convergenceA broader view of uniform convergence
So far, used 

But we only care about interpolators. How about

Is this “uniform convergence”?

It's the standard notion for noiseless ( ) analyses…

Used at least since [ ] and [ ]

From [ ]:

Vapnik 1982 Valiant 1984

Devroye/Györ�/Lugosi 1996
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Conjecture holds Conjecture holds (for Gaussian linear regression)(for Gaussian linear regression)
Speci�cally, our more general bound implies that w.h.p.

 splits up covariance eigenvectors; 

For this to mean anything, need 

Combine with a new analysis on : whp,
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Benign overfitting of Benign overfitting of 

Plugging the two bounds together:

Including all the �ddly conditions I didn't mention, 

we recover the consistency conditions of the landmark paper

[ ]

Additionally tells us about nearly-minimal-norm interpolators

Bartlett/Long/Lugosi/Tsigler PNAS 2020
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Generalization error in compact setsGeneralization error in compact sets
Theorem. If with , w.h.p.

where 

is the Gaussian width (a standard tool)

this is an informal statement, but gets the gist
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Norm needed to interpolate for general normsNorm needed to interpolate for general norms
Theorem. Let  be the dual norm of .

Call .

Under some conditions, w.h.p.

Plugging them together, get consistency conditions analogous to

the [BLLT] ones for minimal-norm interpolators for any norm.
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LASSO, Adaboost, compressed sensing, basis pursuit, …

Much harder to analyze directly, because no closed form! 
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[ ] [ ]Ju/Lin/Liu NeurIPS 2020 Chinot/Lö�er/van de Geer 2021
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New application: minimum New application: minimum 

LASSO, Adaboost, compressed sensing, basis pursuit, …

Much harder to analyze directly, because no closed form! 

Some analysis in isotropic case; didn't show consistency

[ ] [ ]

Our conditions hold in a junk features setting, if 

Very limited setting, but (as far as we know)

�rst consistency result for , 

Ju/Lin/Liu NeurIPS 2020 Chinot/Lö�er/van de Geer 2021
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On Uniform Convergence and Low-Norm Interpolation Learning

Zhou, Sutherland, Srebro [NeurIPS 2020] [ ]

Uniform Convergence of Interpolators:

Gaussian Width, Norm Bounds and Benign Over�tting

Koehler*, Zhou*, Sutherland, Srebro [NeurIPS 2021] [ ]

Junk features example:

 is consistent; usual uniform convergence can't show that

Uniform convergence over norm ball can't show any learning

Uniform convergence of interpolators does work

Matches previously known (nearly necessary) su�cient conditions

Applies to general norm balls (though can be hard to evaluate)

Our analysis is very speci�c to Gaussian data

Coming soon: extension to near-interpolators via optimistic rates

arXiv:2006.05942

arXiv:2106.09276

23

https://arxiv.org/abs/2006.05942
https://arxiv.org/abs/2106.09276


Backup slidesBackup slides

24



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

24 . 1



No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

Koltchinskii/Lounici, Bernoulli 2017
24 . 1

https://arxiv.org/abs/1405.2468/


No uniform convergence on norm balls - proofNo uniform convergence on norm balls - proof
sketchsketch

Theorem: In junk features with ,

Proof idea:

Koltchinskii/Lounici, Bernoulli 2017
24 . 1

https://arxiv.org/abs/1405.2468/


One-sided uniform convergence?One-sided uniform convergence?
We don't really care about small , big …. 

Could we bound  instead of ?

24 . 2



One-sided uniform convergence?One-sided uniform convergence?
We don't really care about small , big …. 

Could we bound  instead of ?

Existing uniform convergence proofs are “really” about 

[ ]Nagarajan/Kolter, NeurIPS 2019

24 . 2

https://arxiv.org/abs/1902.04742/


One-sided uniform convergence?One-sided uniform convergence?
We don't really care about small , big …. 

Could we bound  instead of ?

Existing uniform convergence proofs are “really” about 

[ ]

Strongly expect still  for norm balls in our testbed

 instead of 

Nagarajan/Kolter, NeurIPS 2019

24 . 2

https://arxiv.org/abs/1902.04742/


One-sided uniform convergence?One-sided uniform convergence?
We don't really care about small , big …. 

Could we bound  instead of ?

Existing uniform convergence proofs are “really” about 

[ ]

Strongly expect still  for norm balls in our testbed

 instead of 

Not possible to show  is big for all

If  consistent and , use 

Nagarajan/Kolter, NeurIPS 2019
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Main result of first paperMain result of first paper
Theorem: If ,

Con�rms speculation based on  assumption

Shows consistency with uniform convergence (of interpolators)

New result for error of not-quite-minimal-norm interpolators

Norm  is asympotically consistent

Norm  is at worst 
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What does  look like?
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Intersection of -ball with -hyperplane:

-ball centered at

Can write as 

where  is any interpolator,  is basis for 
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In Gaussian least squares generally, have that

so  is consistent i� .

Very useful for lower bounds! [ ]Muthukumar+ JSAIT 2020
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In our setting:

 is consistent, 

Plugging in:

Analyzing dual with ,

get without any distributional assumptions that

If  consistent, everything smaller-norm also consistent i�  term 

(amount of missed energy)  (available norm)

In the generic results,  means  for some 
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Error up to Error up to 

In our setting:

 is consistent, because 

Plugging in: 

…and we're done!

Analyzing dual with  for , , get in general:

 if  is consistent
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