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Supervised learning
e Giveniid.samples S = {(x;,¥;)}r; ~ D"
» features/covariates x; € R?, labels/targets y; € R

e Want f such that f(x) ~ y for new samples from D:

f* =argmin|Lp(f) := (x,}I,E;:ND L(f(x),y)

» e.g.squared loss: L(§,y) = (§ — y)?

e Standard approaches based on empirical risk minimization:

f ~ argmin | Ls (f) := %ZL(f(xi),yz—)
i=1 |
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Statistical learning theory
We have lots of bounds like: with probability > 1 — 9,

C
sup |Lp(f) — Ls (f)| < \/ i
feF n

Then for large n, Lp(j-‘) ~ Lg (f) <o f ~ f*

Lp(f) < Ls(f) +31€1£\Lp(f) — Ls(f)]



Interpolation learning

Classical wisdom: “a model with zero training
error is overfit to the training data and will
typically generalize poorly”

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
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Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (f) — O, Lp(f) ~ 11%
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Interpolation learning

Classical wisdom: “a model with zero training e
error is overfit to the training data and will
typ i Ca | Iy ge n e ra I ize p O O rly" Data Mining, Inference, and Prediction

(when Lp (f*) > 0)

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (f) — O, L’D(f) ~ 11%

We'll call a model with Lg (f) = 0 an interpolating predictor
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Interpolation does not overfit even for
very noilsy data
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(except Bayes optimal) have zero training square loss.

A

Ls(f)=0

Misha Belkin
Simons Institute
July 2019
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Not a question of improving bounds

correct C]:. 5 nontrivial
’
0.7 < <09 n— oo

n

Misha Belkin
Simons Institute
July 2019

There are no bounds like this and no reason they
should exist.

A constant factor of 2 invalidates the bound!



https://simons.berkeley.edu/talks/tbd-65

Generalization theory for interpolation?

What theoretical analyses do we have?

VC-dimension/Rademacher complexity/covering/ gin bounds.

Cannot deal with interpolated classifiers en Bayes risk is non-zero.

Generalization gap cannot be bound w empirical risk is zero.

Regularization-type analyses ATikhonov, early stopping/SGD, etc.)

Diverge as A—0 for fi

Algorithmic sta

Does not ply when empirical risk is zero, expected risk nonzero.

Classical smoothing methods (i.e., Nadaraya-Watson).
Most classical analyses do not support interpolaticn.

But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])

Lp (f) < Lp (_‘_f:*) + bound

=

—— expected loss

Lp(f) < bound

WYSIWYG

bounds: o
&
" training loss
i1
expected loss

Misha Belkin
Simons Institute
July 2019

Oracle bounds
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optimal loss
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Lots of recent theoretical work on interpolation.
[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],

[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...

None* bound sup s x| Lp(f) — Ls (f)|.

s it possible to find such a bound?
Can uniform convergence explain interpolation learning?

e
But 1-NN'! (Also Hilbert regression Scheme, [Devroye, et al. §8]) ‘ ~

optimal loss

Lp (f) < LD(_:f*) + bound
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Lots of recent theoretical work on interpolation.
[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],

[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...

None* bound sup e x| Lp(f) — Ls (f)|.

s it possible to find such a bound?
Can uniform convergence explain interpolation learning?

B e
But 1-NN'! (Also Hilbert regression Scheme, [Devroye, et al. §8]) ~
optimal loss a
—

*One exception-ish [Negrea/Dziugaite/Roy, ICML 2020]:

relates f to a surrogate predictor,

shows uniform convergence for the surrogate.
(Also, a few things since our first paper.)
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A more specific version of the question

Today, we're mainly going to worry about consistency:.

A

E[Lp(f) — Lp(f*)] — 0
..in a noisy setting: Lp(f*) > 0
...for Gaussian linear regression:

x~N(0,%) y=(x,w*)+N(0,6%) L(y,9) = (y — 3§)*

s it possible to show consistency of an interpolator with

Lp(f) < Ls(f) +sup [Lp(f) — Ls(£)|?
N  fEF

This r((e)quires tight constants!
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A testbed problem: “junk features”

“signal”, dg “junk”, dj; — 00

(xg,Wg™)

A\, controls scale of junk: El|x |2 = A,

Linear regression: L(y, §) = (y — 4)*

Min-norm interpolator: Wy = arg min||w|s = X'y
Xw=y
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{w:

Uniform convergence may be unable to explain
generalization in deep learning

Vaishnavh Nagarajan J. Zico Kolter
Department of Computer Science Department of Computer Science
Carnegie Mellon University Carnegie Mellon University &
Pittsburgh, PA Bosch Center for Artificial Intelligence
vaishnavh@cs.cmu.edu Pittsburgh, PA

zkolter@cs.cmu. edu
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and W, s = {W(S) : S € §,,5}. Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.
N—00 d ;—00 SES, s WEW,, 5

(I 1 had a very similar result for wzy)
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Wy,  argmin||wl|;,  argmin||w — w"||2,

w:Xw=y w:Xw=y

arimin fs(Ws) + fJ(WJ) with each fconvex, fJ(—WJ) = fJ(WJ)
w:Xw=y



https://arxiv.org/abs/1902.04742/
https://arxiv.org/abs/1912.04265/

A more refined uniform convergence analysis?
Theorem (a la [Nagarajan/Kolter, NeurlPS 2019]):
In junk features, for each § € (0, %) letPr(Se S,5) > 14,

W a natural consistent interpolator,
and W, s = {w(S) : S € §,,5}. Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.

N—00d;—00 SESn,(g WEWn,(g

Proof shows that for most S,
there's a typical predictor w (in W, 5)

that's good on most inputs (Lp (W) — ¢2),
but very bad on specifically S (Lg (w) — 40?)
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So, what are we left with?

Convergence of surrogates [Negrea/Dziugaite/Roy, ICML 2020]?
= Nice, but not really the same thing...

Only do analyses based on e.g. exact form of Wyn?

We'd like to keep good things about uniform convergence:
= Apply to more than just one specific predictor

= Tell us more about “why” things generalize
= Easier to apply without a nice closed form
Or...
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A broader view of uniform convergence

(N

Used at least since [Vapnik 1982] and [Valiant 1984]

From [Devroye/Gyorfi/Lugosi 1996]:

PROOF. For ne < 2, the inequality is clearly true. So, we assume that ne > 2. First
observe that since infyec L(¢) = 0, L,(¢,) = 0 with probability one. It is easily
seen that

Lg)) < sup |L($)— Lu(9).
¢:Ln(¢9)=0 €

It's the standard notion for noiseless (Lp (w*) = 0) analyses...


https://link.springer.com/book/10.1007/0-387-34239-7
https://dl.acm.org/doi/10.1145/1968.1972
https://link.springer.com/book/10.1007/978-1-4612-0711-5

A broader view of uniform convergence

Foundations of
Machine Learning condeion

B

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

It's the stand

In the example of axis-aligned rectangles that we examined, the hypothesis hg
returned by the algorithm was always consistent, that is, it admitted no error on
the training sample S. In this section, we present a general sample complexity
bound, or equivalently, a generalization bound, for consistent hypotheses, in the
case where the cardinality |H| of the hypothesis set is finite. Since we consider

consistent hypotheses, we will assume that the target concept ¢ is in H.

Theorem 2.1 Learning bounds finite /, consistent case

Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that
for any target concept ¢ € H and i.1.d. sample S returns a consistent hypothesis hg:
f‘f[h S ) 0. Then, for any €,6 > 0, the inequality Prg..p» :H[fu} 4 r: > 1 — 6 holds

if

m > ](ln,l_', H| + log ‘i) (2.8)

f

This sample complexity result admits the fuNuu'Hw equivalent statement as a gener-

alization bound: for any €,0 > 0, with probability at least 1 — 4,

l l
- OpF T (8] . .2
R(he) (1 g |H| +1 ;ﬁn_) (2.9)

m

Proof Fix € > 0. We do not know which consistent hypothesis hg € H is selected
by the algorithm ,A. This hypothesis further depends on the training sample S.
Therefore, we need to give a uniform convergence bound, that is, a bound that
holds for the set of all consistent hypotheses, which a fortiori includes ho. Thus,
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The interpolator ball in linear regression
What does {w : ||w||s < B, Ls(w) = 0} look like?

{w: Lg(w) = %HXW — y||3 = 0} is the plane Xw = y

Intersection of d-ball with (d — n)-hyperplane:
(d — n)-ball centered at Wy



Optimistic rates

Applying [Srebro/Sridharan/Tewari 2010]: for all |w||s < B,
¥n,: high-prob bound on max;_; .., [|x;||3
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Optimistic rates

Applying [Srebro/Sridharan/Tewari 2010]: for all |w||s < B,
¥n: high-prob bound on max;_; .., [|x;||2

~ B? n B? n
Lp (W) — Lg (W) < Op ( n¢ | \/Ls (W) n¢ )
¢ < 200,000 log®(n)

Vn,
SUD||w|,<B, Lg (w)=0 LD (W) < c—— +op(1)
ifl <A, € n, B=|Wynl|l2, — cLp(w*)

If this holds with ¢ = 1 (and maybe 1, = E||x||2),

would explain consistency on junk features,
and predict that B = a||W || gives o Lp(w*)


https://arxiv.org/abs/https://arxiv.org/pdf/1009.3896.pdf/

Conjecture holds (for Gaussian linear regression)

Specifically, our more general bound implies that w.h.p.

B2 Tr(Z,)
sup  Lp(w) < (1+0(1))
|wllo <B, Ls (w)=0 n

> = 21 P X9 splits up covariance eigenvectors;

Tr(Z;) < Tr(X) = E||x||?



Conjecture holds (for Gaussian linear regression)

Specifically, our more general bound implies that w.h.p.

B2 Tr(Z,)
sup  Lp(w) < (1+0(1))
|wllo <B, Ls (w)=0 n

> = 21 P X9 splits up covariance eigenvectors;

Tr(Z;) < Tr(X) = E||x||?

For this to mean anything, need B > Wy



Conjecture holds (for Gaussian linear regression)

Specifically, our more general bound implies that w.h.p.

B2 Tr(Z,)
sup  Lp(w) < (1+0(1))
|wllo <B, Ls (w)=0 n

> = 21 P X9 splits up covariance eigenvectors;

Tr(Z;) < Tr(X) = E||x||?
For this to mean anything, need B > Wy

Combine with a new analysis on || Wy ||: whp,

on

TI‘(Zz)

[Wanll2 < ||lw*[]2 + (1 + o(1)) \/
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Benign overfitting of w/y

Plugging the two bounds together:

. TI‘(EQ) :
Lp(w) < (1+0(1))| o+ IIW*H\/ =

Including all the fiddly conditions | didn't mention,
we recover the consistency conditions of the landmark paper
[Bartlett/Long/Lugosi/Tsigler PNAS 2020]

Additionally tells us about nearly-minimal-norm interpolators


https://arxiv.org/abs/1906.11300/

Generalization error in compact sets
Theorem. If ¥ = 31 @ Xp withrank(2; ) = o(n), w.h.p.

W (/%K)
sup  Ip(w) < (1+o(1))
wel, Lg(w)=0 n

where W(K) := Eg._y (0,I;) supyerc |(H, w)|]
is the Gaussian width (a standard tool)

this is an informal statement, but gets the gist
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Norm needed to interpolate for general norms

Theorem. Let ||+ ||« be the dual norm of ||-|.
Call W = arg ming,.; w)—o || W][-

Under some conditions, w.h.p.

o\/n
1/2 '
Egnvor)l =,/ H|.

W]l < flw[| + (1 4 o(1))

Plugging them together, get consistency conditions analogous to
the [BLLT] ones for minimal-norm interpolators for any norm.



New application: minimum ||w ||

LASSO, Adaboost, compressed sensing, basis pursuit, ...

Much harder to analyze directly, because no closed form!
Some analysis in isotropic case; didn't show consistency
[Ju/Lin/Liu NeurlPS 2020] [Chinot/Loffler/van de Geer 2021]
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New application: minimum ||w ||

LASSO, Adaboost, compressed sensing, basis pursuit, ...

Much harder to analyze directly, because no closed form!
Some analysis in isotropic case; didn't show consistency
[Ju/Lin/Liu NeurlPS 2020] [Chinot/Loffler/van de Geer 2021]

Our conditions hold in a junk features setting, if d = e*“(")

Very limited setting, but (as far as we know)
first consistency result foro > 0, w* # 0


https://arxiv.org/abs/2002.00492/
https://arxiv.org/abs/2012.00807/

On Uniform Convergence and Low-Norm Interpolation Learning
Zhou, Sutherland, Srebro [NeurlIPS 2020] [arXiv:2006.05942]

Uniform Convergence of Interpolators:
Gaussian Width, Norm Bounds and Benign Overfitting
Koehler*, Zhou*, Sutherland, Srebro [NeurlPS 2021] [arXiv:2106.09276]

e Junk features example:
» Wy is consistent; usual uniform convergence can't show that

= Uniform convergence over norm ball can't show any learning

e Uniform convergence of interpolators does work
= Matches previously known (nearly necessary) sufficient conditions

= Applies to general norm balls (though can be hard to evaluate)
m Qur analysis is very specific to Gaussian data

e Coming soon: extension to near-interpolators via optimistic rates


https://arxiv.org/abs/2006.05942
https://arxiv.org/abs/2106.09276

Backup slides
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Iim Iim K
n—oo —00

Iwlla <lwanwll2

sup

sketch

Theorem: In junk features with A, = o(n),

| Lp(w) — Ls(w)

Proof idea:

Lp(w) = (w— w*)TZ(WA— w") + Lp(w")
Lp(w)—Lg(w)=(w—-—w")(Z—X)(w—w")

+ (Lp(w*) — Lg(W™)) — cross term

sup[. . .| > || = B|lop - ([Waawlz — [W*[l2)* + o(1)
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No uniform convergence on norm balls - proof
sketch

Theorem: In junk features with A, = o(n),

lim lim E sup |Lp(w)— Lg(w)|| = oo.
nTreedrroo | |lwlly<I1wawll;

Proof idea:

Lp(w) = (w— w*)TZ(WA— w") + Lp(w")
Lp(w)—Lg(w)=(w—-—w")(Z—3X)(w—w")
+ (Lp(w*) — Lg(W")) — cross term
supl....] > || — 2|y - ([Wawll2 — [W*[2)* + o(1)

o(vX) e(%)
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No uniform convergence on norm balls - proof
sketch

Theorem: In junk features with A, = o(n),

lim lim E sup |Lp(w)— Lg(w)|| = oo.
nTreedrroe | [lwlly<I1wawll;

Proof idea:

Lp(w) = (w— w*)TZ(WA— w") + Lp(w")
Lp(w)—Lg(w)=(w—-—w")(Z—2)(w—w")
+ (Lp(w*) — Lg(W")) — cross term
supl....] > || — 2|op - (I[Warwll2 — [[W*[l2)* + 0(1) — oo

o(vX) e(%)
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One-sided uniform convergence?

We don't really care about small Lp, big Lg....
Could we bound sup Lp — Lg instead of sup|Lp — Lg |?

e Existing uniform convergence proofs are “really” about
‘Lp — Lg ‘ [Nagarajan/Kolter, NeurlPS 2019]

e Strongly expect still oo for norm balls in our testbed
= Apax (X — X) instead of |3 — X[
* Not possible to show sup ¢z Lp — Lg is big for all F

= If f consistent and infy Lg(f) > 0, use
F=1f:Lp(f) < Lp(f*) + €ns}


https://arxiv.org/abs/1902.04742/

Iim lim E
n—oo —00

Main result of first paper

Theorem: If A,, = o(n),
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Main result of first paper

Theorem: If A,, = o(n),

lim lim E sup |Lp(w) = o Lp(w*)
N0 d =0 | ||lw|<al| Wl
B LS (W)ZO i

e Confirms speculation based on ¢ = 1 assumption
e Shows consistency with uniform convergence (of interpolators)

e New result for error of not-quite-minimal-norm interpolators
= Norm ||W || + const is asympotically consistent

= Norm 1.1||W || is at worst 1.21 Lp (w™)
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What does {w : ||w|| < B, Lg(w) = 0} look like?

{w: Lg(w) = %HXW — y||* = 0} isthe plane Xw =y

Intersection of d-ball with (d — n)-hyperplane:
centered at Wy

Canwrite as {W + Fz : z € R* ™", | W + Fz| < B}
where W is any interpolator, F' is basis for ker(X)

24 .

4
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Decomposition via strong duality

Can change variables in SUDy,.|w(<B, Ls(w)=0 LD (W) to

Lp(w™) + sup (W+Fz —w*)' 2(W+ Fz — v
z:||W+Fz|? <B?

Quadratic program, one quadratic constraint: strong duality
Exactly equivalent to problem in one scalar variable:

Lp(%)+ inf [[F7[pé— B0 —w)|| o+ (B — [[w]f*)

]
4> |FTF| —F XF)

Can analyze this for different choices of w...
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The minimal-risk interpolator

Wyr = argmin Lp(w)
w: Xw=y

=w" + 21 XT(XZI X)) (¥ — xw*)
In Gaussian least squares generally, have that

d—1
d—1—n

ELD(WMR) — LD(W*)

SO0 W g is consistent iff n = o(d).

Very useful for lower bounds! [Muthukumar+ JSAIT 2020]


https://arxiv.org/abs/1903.09139

Restricted eigenvalue under interpolation

kx (X) = sup W' Zw
Iw||=1, Xw=0

Roughly, “how much” of 3J is “missed” by X
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Consistency up to \lWMR H

Analyzing dual with W g,
get without any distributional assumptions that

1<B<4
sup Lp(w) = Lp(Wur) + Brx (%) [||VAVMR||2 - |VAVMN||2]
Wl <|[wumrll (amount of missed energy) - (available norm)

Lg (w)=0
If Wr consistent, everything smaller-norm also consistent iff 8 term — 0

In our setting:
W g is consistent, Lp(Wyr) — Lp(wW™)
A . ) o’dg
kx(Z) ~ = E[[|wurl® — [Wunl*] = )\
n

n
Plugging in: Esup”WHS”VA"MRH, Lg (w)=0 LD (W) — LD (W*)

+o0(1)
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Error up to a|| Wy |
Analyzing dual with Wy for w, a > 1, get in general:

sup  Lp(w) = Lp(Wuw) + (o — 1) 6x(Z) [Waw||* + R

w||<alw A . .
| E;(J):%N“ R, — 0if Wy is consistent

In our setting:

Wy is consistent, because |[Wyn|| < |[|[Wurl||
E rx (2) [|[Wunl* = 0® = Lp(w*)
Plugging in: ]ESHPHWHSQH‘;VMN”, Lg (w)=0 LD (W) — Olz LD (W*)

...and we're done!



