
Neural Tangent Kernels,
Finite and Infinite
ISI Winter School on Deep Learning

February 2023

Danica Sutherland

cs.ubc.ca/~dsuth/; these slides are under “talks” section

1

https://www.cs.ubc.ca/~dsuth/

• We use gradient descent (or similar) to try to find the best network

2

What happens when training a neural net?

Wikimedia Gradient_descent.gif; Li et al. (NeurIPS-2020) Fig 1a

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

• We use gradient descent (or similar) to try to find the best network

2

What happens when training a neural net?

Wikimedia Gradient_descent.gif; Li et al. (NeurIPS-2020) Fig 1a

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

• We use gradient descent (or similar) to try to find the best network

2

What happens when training a neural net?

• Loss landscape might be complicated (is non-convex)

• Where do we actually end up?

• Neural tangent kernel theory lets us approximate this process

Wikimedia Gradient_descent.gif; Li et al. (NeurIPS-2020) Fig 1a

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

Does training neural nets work?

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

• Bad local minima do exist

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
Mobile User

Mobile User

Mobile User

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

• Bad local minima do exist
• But does SGD find them?  

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

• Bad local minima do exist
• But does SGD find them?  

• Several papers around 2018-19 showed:
• If the network is very overparameterized (width , possibly)≫ N → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

3arXiv:1911.01413

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

• Bad local minima do exist
• But does SGD find them?  

• Several papers around 2018-19 showed:
• If the network is very overparameterized (width , possibly)≫ N → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the

neural tangent kernel
3arXiv:1911.01413

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Problem setting

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x
• is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x
• is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

• Have a labeled dataset S = {(xi, yi)}N
i=1

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x
• is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

• Have a labeled dataset S = {(xi, yi)}N
i=1

• Per-element loss function , , etcℓ(ŷ, y) = − log(ŷ ⋅ y) ℓ(̂y, y) = 1
2 ∥ŷ − y∥2

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x
• is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

• Have a labeled dataset S = {(xi, yi)}N
i=1

• Per-element loss function , , etcℓ(ŷ, y) = − log(ŷ ⋅ y) ℓ(̂y, y) = 1
2 ∥ŷ − y∥2

• Training loss LS(w) =
N

∑
i=1

ℓ(f(xi; w), yi)

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

Problem setting
• Notation for this talk: is a function with parameters evaluated at f(x; w) w x
• is all of the parameters of a deep net, all stacked togetherw

• is one particular input, e.g. x
• is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

• Have a labeled dataset S = {(xi, yi)}N
i=1

• Per-element loss function , , etcℓ(ŷ, y) = − log(ŷ ⋅ y) ℓ(̂y, y) = 1
2 ∥ŷ − y∥2

• Training loss LS(w) =
N

∑
i=1

ℓ(f(xi; w), yi)

• Choose to minimize with (stochastic) gradient descentw LS
4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

• Full-batch gradient descent, square loss on scalars: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

5

One step of gradient descent

• Full-batch gradient descent, square loss on scalars: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

5

 wt+1 = wt − η
N

N

∑
i=1

∇wℓ(f(xi; w), yi)
⊤

wt

One step of gradient descent

• Full-batch gradient descent, square loss on scalars: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

5

 wt+1 = wt − η
N

N

∑
i=1

∇wℓ(f(xi; w), yi)
⊤

wt

 = wt − η
N

N

∑
i=1

([∇ ̂yℓ(̂y, yi) ̂y=f(xi,wt)] [∇w f(xi, wt) wt])
⊤

One step of gradient descent

• Full-batch gradient descent, square loss on scalars: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

5

 wt+1 = wt − η
N

N

∑
i=1

∇wℓ(f(xi; w), yi)
⊤

wt

 = wt − η
N

N

∑
i=1

([∇ ̂yℓ(̂y, yi) ̂y=f(xi,wt)] [∇w f(xi, wt) wt])
⊤

 wt+1 − wt = − η
N

N

∑
i=1

[∇w f(xi, wt) wt]
⊤

(f(xi, wt)−yi)

One step of gradient descent

• Full-batch gradient descent, square loss on scalars: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

5

 wt+1 = wt − η
N

N

∑
i=1

∇wℓ(f(xi; w), yi)
⊤

wt

 = wt − η
N

N

∑
i=1

([∇ ̂yℓ(̂y, yi) ̂y=f(xi,wt)] [∇w f(xi, wt) wt])
⊤

 wt+1 − wt = − η
N

N

∑
i=1

[∇w f(xi, wt) wt]
⊤

(f(xi, wt)−yi)

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1

⟨∇w f(x; w)
wt

, ∇w f(xi, wt) wt ⟩ (f(xi, wt)−yi)

One step of gradient descent

• Full-batch gradient descent, square loss: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

6

 wt+1 − wt = − η
N

N

∑
i=1

[∇w f(xi, wt) wt]
⊤

(f(xi, wt)−yi)

One step of gradient descent in function space

• What does that do to ?
f(x; wt)

• Full-batch gradient descent, square loss: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

6

 wt+1 − wt = − η
N

N

∑
i=1

[∇w f(xi, wt) wt]
⊤

(f(xi, wt)−yi)

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1

⟨∇w f(x; w)
wt

, ∇w f(xi, w)
wt ⟩ (f(xi, wt)−yi)

One step of gradient descent in function space

• What does that do to ?
f(x; wt)

• Full-batch gradient descent, square loss: LS(w) = 1
2N

N

∑
i=1

(f(xi, w)−yi)2

6

 wt+1 − wt = − η
N

N

∑
i=1

[∇w f(xi, wt) wt]
⊤

(f(xi, wt)−yi)

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1

⟨∇w f(x; w)
wt

, ∇w f(xi, w)
wt ⟩ (f(xi, wt)−yi)

One step of gradient descent in function space

• What does that do to ?
f(x; wt)

f(x; wt+1) = f(x; wt) + [∇w f(x; w)
wt](wt+1 − wt) + ,(∥wt+1 − wt∥2)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

NTK regime
• Defining a function , we just showed 

kw(x, x′) = ⟨∇f(x; w)|w, ∇f(x′ ; w)|w⟩
f(x; wt+1) − f(x; wt) ≈ − η

N

N

∑
i=1

kwt
(x, xi)(f(xi, wt)−yi)

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

NTK regime
• Defining a function , we just showed 

kw(x, x′) = ⟨∇f(x; w)|w, ∇f(x′ ; w)|w⟩
f(x; wt+1) − f(x; wt) ≈ − η

N

N

∑
i=1

kwt
(x, xi)(f(xi, wt)−yi)

• “NTK regime” is when throughout training. If so, we have 

kwt
≈ k0

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1

k0(x, xi)(f(xi, wt)−yi)

7

NTK regime
• Defining a function , we just showed 

kw(x, x′) = ⟨∇f(x; w)|w, ∇f(x′ ; w)|w⟩
f(x; wt+1) − f(x; wt) ≈ − η

N

N

∑
i=1

kwt
(x, xi)(f(xi, wt)−yi)

• “NTK regime” is when throughout training. If so, we have 

kwt
≈ k0

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1

k0(x, xi)(f(xi, wt)−yi)
• Let , 

, 
: 

k0(x) = [k0(x, x1) ⋯ k0(x, xN)] ∈ ℝ1×N

ft = [f(x1; wt) ⋯ f(xN; wt)] ∈ ℝN

y = [y1 ⋯ yN] ∈ ℝN

f(x; wt+1) − f(x; wt) ≈ − η
N

k0(x)(ft − y)
7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearized solution
• If throughout training,  

and we take a continuous limit instead of discrete steps (gradient flow),  
  

kwt
≈ k0

d
dt

f(x; wt) ≈ − η
N

k0(x)(ft − y)

8

Mobile User

Mobile User

Linearized solution
• If throughout training,  

and we take a continuous limit instead of discrete steps (gradient flow),  
  

kwt
≈ k0

d
dt

f(x; wt) ≈ − η
N

k0(x)(ft − y)

• Let’s define an explicit approximation: f lin(x; w) = f(x; w0) + ∇w f(x; w)
w0

8

Linearized solution
• If throughout training,  

and we take a continuous limit instead of discrete steps (gradient flow),  
  

kwt
≈ k0

d
dt

f(x; wt) ≈ − η
N

k0(x)(ft − y)

• Let’s define an explicit approximation: f lin(x; w) = f(x; w0) + ∇w f(x; w)
w0

• The differential equation has a closed-form solution: 

letting , 

d
dt

f lin(x; wt) = − η
N

k0(x)(flin
t − y)

(K0)ij = k0(xi, xj)
f lin(x; wt) = k0(x) K0

−1 (I − e− ηt
N K0) (y − f0) + f0(x)

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearized solution
• If throughout training,  

and we take a continuous limit instead of discrete steps (gradient flow),  
  

kwt
≈ k0

d
dt

f(x; wt) ≈ − η
N

k0(x)(ft − y)

• Let’s define an explicit approximation: f lin(x; w) = f(x; w0) + ∇w f(x; w)
w0

• The differential equation has a closed-form solution: 

letting , 

d
dt

f lin(x; wt) = − η
N

k0(x)(flin
t − y)

(K0)ij = k0(xi, xj)
f lin(x; wt) = k0(x) K0

−1 (I − e− ηt
N K0) (y − f0) + f0(x)

• As , if is full-rank (usual case), , t → ∞ K0 e− ηt
N K0 → 0

f lin(x; wt) → k0(x) K0
−1 (y − f0) + f0(x)

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearized solution
• If throughout training,  

and we take a continuous limit instead of discrete steps (gradient flow),  
  

kwt
≈ k0

d
dt

f(x; wt) ≈ − η
N

k0(x)(ft − y)

• Let’s define an explicit approximation: f lin(x; w) = f(x; w0) + ∇w f(x; w)
w0

• The differential equation has a closed-form solution: 

letting , 

d
dt

f lin(x; wt) = − η
N

k0(x)(flin
t − y)

(K0)ij = k0(xi, xj)
f lin(x; wt) = k0(x) K0

−1 (I − e− ηt
N K0) (y − f0) + f0(x)

• As , if is full-rank (usual case), , t → ∞ K0 e− ηt
N K0 → 0

f lin(x; wt) → k0(x) K0
−1 (y − f0) + f0(x)

• This is the same formula as gradient flow for kernel regression – back to this soon!8

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

9

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md

9

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md
• The are fixed signs in , for maximum simplicityaj {−1,1}

9

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md
• The are fixed signs in , for maximum simplicityaj {−1,1}

• Then

9

kw(x1, x2) = ⟨∇w f(x1; w), ∇w f(x1; w)⟩

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md
• The are fixed signs in , for maximum simplicityaj {−1,1}

• Then

9

= ⟨
a1x1σ′ (w1 ⋅ x1)/ m

⋮
amx1σ′ (wm ⋅ x1)/ m

,
a1x2σ′ (w1 ⋅ x2)/ m

⋮
amx2σ′ (wm ⋅ x2)/ m

⟩

kw(x1, x2) = ⟨∇w f(x1; w), ∇w f(x1; w)⟩

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md
• The are fixed signs in , for maximum simplicityaj {−1,1}

• Then

9

= ⟨
a1x1σ′ (w1 ⋅ x1)/ m

⋮
amx1σ′ (wm ⋅ x1)/ m

,
a1x2σ′ (w1 ⋅ x2)/ m

⋮
amx2σ′ (wm ⋅ x2)/ m

⟩
= x⊤

1 x2
1
m

m

∑
j=1

a2
j σ′ (wj ⋅ x1)σ′ (wj ⋅ x2)

kw(x1, x2) = ⟨∇w f(x1; w), ∇w f(x1; w)⟩

Mobile User

A wide, shallow network
• Start with depth 2, scalar output: f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

• is part of the vector of all parameters, for wj ∈ ℝd w ∈ ℝD D = md
• The are fixed signs in , for maximum simplicityaj {−1,1}

• Then

9

= ⟨
a1x1σ′ (w1 ⋅ x1)/ m

⋮
amx1σ′ (wm ⋅ x1)/ m

,
a1x2σ′ (w1 ⋅ x2)/ m

⋮
amx2σ′ (wm ⋅ x2)/ m

⟩
= x⊤

1 x2
1
m

m

∑
j=1

a2
j σ′ (wj ⋅ x1)σ′ (wj ⋅ x2) m→∞ x⊤x′ 2w [σ′ (w⊤x) σ′ (w⊤x′)]

kw(x1, x2) = ⟨∇w f(x1; w), ∇w f(x1; w)⟩

if the are i.i.d. randomwj

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

arccos kernel
For , for any , and , 
the NTK at initialization is  

∥x1∥ = 1 = ∥x2∥ w ∼ 4(0, νI) ν > 0 σ(z) = ReLU(z) = max(z,0)

(x1 ⋅ x2)2w[σ′ (w ⋅ x1) σ′ (w ⋅ x2)] = (x1 ⋅ x2)(1
2 − 1

2π
arccos(x1 ⋅ x2))

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

arccos kernel
For , for any , and , 
the NTK at initialization is  

∥x1∥ = 1 = ∥x2∥ w ∼ 4(0, νI) ν > 0 σ(z) = ReLU(z) = max(z,0)

(x1 ⋅ x2)2w[σ′ (w ⋅ x1) σ′ (w ⋅ x2)] = (x1 ⋅ x2)(1
2 − 1

2π
arccos(x1 ⋅ x2))

10

This kernel has nice properties: it’s universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}

NTK at initialization
• It’s generally true (with a much more complicated proof) that
• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w

11

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at initialization
• It’s generally true (with a much more complicated proof) that
• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• it holds that the “empirical NTK” converges almost surely to kw 2wkw

11

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at initialization
• It’s generally true (with a much more complicated proof) that
• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• it holds that the “empirical NTK” converges almost surely to kw 2wkw
• Convergence might be slow, though!

11

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at initialization
• It’s generally true (with a much more complicated proof) that
• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• it holds that the “empirical NTK” converges almost surely to kw 2wkw
• Convergence might be slow, though!

• Can compute with dynamic programming: github.com/google/neural-tangents2wkw

11

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

How good is the approximation?

• Remember that we linearized around :  

• Linear in but usually not linear in !

• Let’s return to our simple case

• How close is to for the we see during training?

f w0

f lin(x; w) = f(x; w0) + [∇w f(x, w)
w0](w − w0) ≈ f(x; w)

w x
f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

f lin f w

12

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

= 1
m

m

∑
j=1

aj [σ(w0,j ⋅ x) + σ′ (w0,j ⋅ x) x ⋅ (wj − w0,j)]

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

= 1
m

m

∑
j=1

aj [σ(w0,j ⋅ x) + σ′ (w0,j ⋅ x) x ⋅ (wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

= 1
m

m

∑
j=1

aj [σ(w0,j ⋅ x) + σ′ (w0,j ⋅ x) x ⋅ (wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
= 0 for ReLU: σ(z)=zσ′ (z)

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

= 1
m

m

∑
j=1

aj [σ(w0,j ⋅ x) + σ′ (w0,j ⋅ x) x ⋅ (wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
= 0 for ReLU: σ(z)=zσ′ (z)

fW0
(x; W) = ⟨∇f(x; W0), W⟩

13

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = f(x; w0) + ⟨∇f(x; w0), w − w0⟩

= 1
m

m

∑
j=1

aj [σ(w0,j ⋅ x) + σ′ (w0,j ⋅ x) x ⋅ (wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
= 0 for ReLU: σ(z)=zσ′ (z)

We’ll see shortly that shrinks as growsf − f lin m

fW0
(x; W) = ⟨∇f(x; W0), W⟩

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

Mobile User

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(wj ⋅ x−w0,j ⋅ x)2

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(wj ⋅ x−w0,j ⋅ x)2 ≤ β

2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

14

f(x; w) = 1
m

m

∑
j=1

aj σ(wj ⋅ x)

f lin(x; w) = 1
m

m

∑
j=1

aj ([σ(w0,j ⋅ x) − σ′ (w0,j ⋅ x) w0,j ⋅ x] + σ′ (w0,j ⋅ x)wj ⋅ x)
If is -smooth (meaning for all), , and :σ β |σ′ ′ (z)| ≤ β z |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; w) − f lin(x; w) ≤ 1
m

m

∑
j=1

|aj| σ(wj⋅x) − σ(w0,j⋅x) − σ′ (w0,j⋅x)x⋅(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(wj ⋅ x−w0,j ⋅ x)2 ≤ β

2 m
∥w − w0∥2

F≤ β
2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

15

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

• This holds for any and , but only for this shallow casew w0

15

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

• This holds for any and , but only for this shallow casew w0

• So if , approximation is “good enough”∥wt − w0∥2 ≪ 2
β

m

15

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

• This holds for any and , but only for this shallow casew w0

• So if , approximation is “good enough”∥wt − w0∥2 ≪ 2
β

m

• is bounded as , if kernel is always full-rank∥wt − w0∥2 m → ∞

15

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

• This holds for any and , but only for this shallow casew w0

• So if , approximation is “good enough”∥wt − w0∥2 ≪ 2
β

m

• is bounded as , if kernel is always full-rank∥wt − w0∥2 m → ∞
• where stacks  

  

 for large

∥wt − w0∥ = ∥−Φ(ΦΦ⊤)−1(I − e− ηt
N K0)(f0 − y)∥ Φ ϕ(xi)

≤ ∥Φ(ΦΦ⊤)−1∥op ∥(I − e− ηt
N K0)∥op ∥f0 − y∥

≤ 1
σmin(Φ) ⋅ 1 ⋅ ∥f0 − y∥ t

15

Full training with any architecture
• It’s generally true (with a much more complicated proof) that

• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)

• in the limit as the network becomes wider,

• for appropriate Gaussian-distributed ,

• for small SGD step sizes ,

• then for any and t, it holds that converges almost surely to

w
η

x ft(x) f lin
t (x)

16

https://arxiv.org/abs/2105.03703
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Recap of overall theory
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)

17

Recap of overall theory
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

17

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Recap of overall theory
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set: K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

17

Vector outputs

• Network can have outputs 

• ,  

• Usually write , ,  
 
 Then  

•

O > 1

ϕw(x) = ∇w f(x; w)|w ∈ ℝO×D kw(x1, x2) = ϕw(x1)ϕw(x2)⊤ ∈ ℝO×O

K0 ∈ ℝNO×NO k0(x) ∈ ℝ1×NO y ∈ ℝNO

flin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x) ∈ ℝO

18

Other loss functions

• Can use other losses than square loss; get same kind of ODE  

• Doesn’t necessarily have a closed form anymore

• Square loss isn’t such a bad loss, even for classification!

• Hui and Belkin (2020)

d
dt

f lin(x; wt) = − η
N

k0(x)[∇ŷLS(ŷ, yi) ŷ=f(xi,wt)]
N

i=1

19

https://arxiv.org/abs/2006.07322

Kernel regression

20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel methods
• Kernel models are linear models in feature space

• A usual real-valued linear model is

• Kernel models are for some fixed feature map

• For example, polynomial features like

• Can in general map to any Hilbert space, not just

• More on this later!

• The kernel function is

• Not the same as kernel density estimation, convolutional kernels, 

kernel of a linear map (null space), the Linux kernel, …

• The space of functions for all possible  

is known as a reproducing kernel Hilbert space (RKHS)

f(x; w) = ⟨x, w⟩
f(x; w) = ⟨ϕ(x), w⟩ ϕ(x)

ϕ(x) = (1, x, x2)
ℝD

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩

f(x; w) = ⟨ϕ(x), w⟩ w

21

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel regression

• For a fixed , minimize

• If , there are typically infinitely many with

• One strategy: start at some and do gradient descent until you hit one

• If , gradient descent converges to (proof via SVD)  

• Predictions are

• i.e. exactly from before

ϕ LS(w) = 1
2N

N

∑
i=1

(⟨ϕ(xi), w⟩−y)2

D > N w LS(w) = 0
w0

η < 2
σmax(X)2

ŵ = argmin
w:Φw=y

∥w − w0∥ = Φ⊤K−1y + (I − Φ⊤K−1Φ)w0

⟨φ(x), ŵ⟩ = k(x) K−1y + f0(x) − KK−1f0
̂f(x) = k(x) K−1 (y − f0) + f0(x)

22

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression
• The more common way to choose a solution is ridge regression: for , 

  

  

λ > 0
ŵλ = argmin

w

1
N

N

∑
i=1

(⟨w, ϕ(xi)⟩−yi)2 + λ∥w − w0∥2

= w0 + Φ⊤(K + NλI)−1(y−Φ⊤w0)
⟨ŵλ, ϕ(x)⟩ = f0(x) + k(x) (K + NλI)−1(y − f0)

23

Kernel ridge regression
• The more common way to choose a solution is ridge regression: for , 

  

  

λ > 0
ŵλ = argmin

w

1
N

N

∑
i=1

(⟨w, ϕ(xi)⟩−yi)2 + λ∥w − w0∥2

= w0 + Φ⊤(K + NλI)−1(y−Φ⊤w0)
⟨ŵλ, ϕ(x)⟩ = f0(x) + k(x) (K + NλI)−1(y − f0)

• An equivalent view, kernel ridge regression:

• The RKHS is a Hilbert space, and so has a norm  

• RKHS norm for is

ℋ ∥f∥ℋ

̂fλ = argmin
f∈ℋ

1
N

N

∑
i=1

(f(xi)−yi)2 + λ∥f − f0∥2
ℋ

f(x) = ⟨w, ϕ(x)⟩ ∥f∥ℋ = ∥w∥

23

Kernel ridge regression
• The more common way to choose a solution is ridge regression: for , 

  

  

λ > 0
ŵλ = argmin

w

1
N

N

∑
i=1

(⟨w, ϕ(xi)⟩−yi)2 + λ∥w − w0∥2

= w0 + Φ⊤(K + NλI)−1(y−Φ⊤w0)
⟨ŵλ, ϕ(x)⟩ = f0(x) + k(x) (K + NλI)−1(y − f0)

• An equivalent view, kernel ridge regression:

• The RKHS is a Hilbert space, and so has a norm  

• RKHS norm for is

ℋ ∥f∥ℋ

̂fλ = argmin
f∈ℋ

1
N

N

∑
i=1

(f(xi)−yi)2 + λ∥f − f0∥2
ℋ

f(x) = ⟨w, ϕ(x)⟩ ∥f∥ℋ = ∥w∥
• Note: equivalent to use / but fit residuals w0 = 0 f0(x) = 0 yi − f0(xi)

23

Kernel “ridgeless” regression

• Running small-LR gradient descent from gives same predictions as : 

  
  

w0 lim
λ→0

̂fλ

̂fλ(x) = k(x) (K + NλI)−1(y − f0) + f0(x)
̂f(x) = k(x) K−1 (y − f0) + f0(x)

24

Kernel “ridgeless” regression

• Running small-LR gradient descent from gives same predictions as : 

  
  

w0 lim
λ→0

̂fλ

̂fλ(x) = k(x) (K + NλI)−1(y − f0) + f0(x)
̂f(x) = k(x) K−1 (y − f0) + f0(x)

• We know some stuff about kernel predictors,  
e.g. what kinds of functions they can learn without overfitting

• (it’s the functions with small)∥f − f0∥ℋ

24

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞
• But doesn’t change too much as ! kw m → ∞

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞
• But doesn’t change too much as ! kw m → ∞

• We can still do stuff in infinite-dimensional RKHSes!

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞
• But doesn’t change too much as ! kw m → ∞

• We can still do stuff in infinite-dimensional RKHSes!
• Gaussian kernel is also infinite-dimk(x1, x2) = exp(− 1

2σ2 ∥x1 − x2∥2)

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞
• But doesn’t change too much as ! kw m → ∞

• We can still do stuff in infinite-dimensional RKHSes!
• Gaussian kernel is also infinite-dimk(x1, x2) = exp(− 1

2σ2 ∥x1 − x2∥2)
• We just only use kernel form: ̂f(x) = k(x) K−1 (y − f0) + f0(x)

25

Infinite NTKs are infinite-dimensional
• The for an empirical NTK is in , with the total number of parametersw ℝD D
• As width , as wellm → ∞ D → ∞
• But doesn’t change too much as ! kw m → ∞

• We can still do stuff in infinite-dimensional RKHSes!
• Gaussian kernel is also infinite-dimk(x1, x2) = exp(− 1

2σ2 ∥x1 − x2∥2)
• We just only use kernel form: ̂f(x) = k(x) K−1 (y − f0) + f0(x)
• Representer theorem implies that 

 for some ̂f(x) − f0(x) =
N

∑
i=1

αik(x, xi) = k(x) ⋅ α α ∈ ℝN

25

Uses and limitations of infinite NTKs

26

Great method for small-data tasks

27arXiv:1910.01663

https://arxiv.org/abs/1910.01663

Good for distinguishing distributions

28https://proceedings.mlr.press/v139/jia21a.html; https://openreview.net/pdf?id=_d2f3hRn0hT

Useful signal for trainability of architectures

29http://proceedings.mlr.press/v119/xiao20b/xiao20b.pdf

Drawback: computation
• For a scalar problem, the kernel matrix is

• Solving kernel regression exactly takes memory, ~ time

• Computing is really slow / lots of memory for big architectures

• Empirical NTK generally much faster, lower-memory than infinite NTK

• With “normal” deep learning, everything is

K N × N
,(N2) ,(N3)

K

,(N)

30https://arxiv.org/abs/2106.07880

Drawback: computation
• For a scalar problem, the kernel matrix is

• Solving kernel regression exactly takes memory, ~ time

• Computing is really slow / lots of memory for big architectures

• Empirical NTK generally much faster, lower-memory than infinite NTK

• With “normal” deep learning, everything is

K N × N
,(N2) ,(N3)

K

,(N)
• One possible help: “sketching” approximations

• with ̂k(x1, x2) = ψ(x1) ⋅ ψ(x2) ψ(x) ∈ ℝp

30https://arxiv.org/abs/2106.07880

Drawback: computation
• For a scalar problem, the kernel matrix is

• Solving kernel regression exactly takes memory, ~ time

• Computing is really slow / lots of memory for big architectures

• Empirical NTK generally much faster, lower-memory than infinite NTK

• With “normal” deep learning, everything is

K N × N
,(N2) ,(N3)

K

,(N)
• One possible help: “sketching” approximations

• with ̂k(x1, x2) = ψ(x1) ⋅ ψ(x2) ψ(x) ∈ ℝp

30https://arxiv.org/abs/2106.07880

So, is deep learning just kernels?

31

So, is deep learning just kernels?

• No.

31

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in the “NTK regime”

31

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in the “NTK regime”
• Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+%

31

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in the “NTK regime”
• Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+%

• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…

31

A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1

32

A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
• Gradient descent can learn this with polynomially many samples

32

A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
• Gradient descent can learn this with polynomially many samples
• Kernel-based methods require at least one of

32

A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
• Gradient descent can learn this with polynomially many samples
• Kernel-based methods require at least one of
• exponentially many samples

32

A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
• Gradient descent can learn this with polynomially many samples
• Kernel-based methods require at least one of
• exponentially many samples
• exponentially large RKHS norm (i.e. hard to learn)

32

33

Uses of empirical NTKs

34

One application: active learning

35https://arxiv.org/abs/2206.12569

One application: active learning

35https://arxiv.org/abs/2206.12569

One application: active learning

35https://arxiv.org/abs/2206.12569

One application: active learning

35https://arxiv.org/abs/2206.12569

One application: active learning

35https://arxiv.org/abs/2206.12569

Active learning: look-ahead criteria

• Given a model trained on

• What our model would be if we retrained on ?

• Too expensive to actually retrain

• We can take a Taylor expansion around current weights

• Then ask questions about to pick which point to query

• e.g. measure

f(x; w) S
S+ = S ∪ {(x+, y+)}

w
f lin(x; w+)

∑
x∈'

∥f lin(x; w+) − f(x; w)∥

36https://arxiv.org/abs/2206.12569

Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data

37https://arxiv.org/abs/2206.12569

Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data
• Much better “understanding” of retraining behaviour than infinite NTK or one

step of SGD
37https://arxiv.org/abs/2206.12569

Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data
• Much better “understanding” of retraining behaviour than infinite NTK or one

step of SGD
37https://arxiv.org/abs/2206.12569

Active learning with empirical NTKs
• Matches or beats other active learning methods

38https://arxiv.org/abs/2206.12569

Predicting generalization

39https://arxiv.org/abs/2203.06176

• Uses generalized cross-validation to
estimate how well a network will generalize
on a new dataset after you fine-tune it

Computing empirical NTKs
• If we have outputs, is

• CIFAR-10: , : 2.8 terabytes in memory

• Imagenet: , : 11,520,000 terabytes in memory  

• For the infinite NTK, we can actually ignore the part

• Has form because of the last layer – corresponds to doing an

independent kernel regression for each component

• CIFAR-10 becomes 29 gigabytes, ImageNet 11.52 terabytes  

• For empirical NTK, we can get rid of the too!

O K NO × NO
N = 60,000 O = 10
N ≈ 1,200,000 O = 1000

O
K ⊗ I

O

40

Pseudo-NTK

•

• The kernel, its largest eigenvalue, and kernel regression outputs  
all converge to the full eNTK result at rate

k̃w(x1, x2) = ∇w
1
O

O

∑
j=1

fj(x1; w) ⋅ ∇w
1
O

O

∑
j=1

fj(x2; w)

.(1/ m)

41https://arxiv.org/abs/2206.12543

Pseudo-NTK: kernel approximation

42https://arxiv.org/abs/2206.12543

Pseudo-NTK: regression results

43https://arxiv.org/abs/2206.12543

Pseudo-NTK on full CIFAR-10

44https://arxiv.org/abs/2206.12543

Understanding learning dynamics

• Interesting insights, worth reading – but based on NTKs from 500 samples
only, since they didn’t have the pNTK!

• In particular, it seems empirical NTK does meaningfully change later in the
process than they were able to notice

45https://arxiv.org/abs/2010.15110

Understanding learning dynamics

46

Understanding learning dynamics

47

Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)

48

Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

48

Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set: K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

48

Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set: K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

• This can’t explain all of real deep learning

48

Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training, stays close to the linearized training result:  

f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set: K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

• This can’t explain all of real deep learning
• But it’s a useful tool, especially local approximations with empirical NTK

48

