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What happens when training a neural net?

 \We use gradient descent (or similar) to try to find the best network
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What happens when training a neural net?

 \We use gradient descent (or similar) to try to find the best network

* Loss landscape might be complicated (is non-convex)
 Where do we actually end up?
 Neural tangent kernel theory lets us approximate this process
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e Several papers around 2018-19 showed:

 If the network is very overparameterized (width > N, possibly — o)

e and we use an appropriate random Iinitialization
* with square loss

* then (S)GD finds a global minimum
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Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0
 Could be a global minimum, a local minimum, or a saddle point

 Bad local minima do exist Sub-Optimal Local Minima Exist for Neural
e But does SGD find them? Networks with Almost All Non-Linear Activations
Tian Ding* Dawei Li T Ruoyu Sun *

e Several papers around 2018-19 showed:

 If the network is very overparameterized (width > N, possibly — o)
e and we use an appropriate random Iinitialization
* with square loss
* then (S)GD finds a global minimum
* Implicit in these papers:
* Behaviour of deep nets converges to kernel ridge regression with the

neural tangent kernel
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 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001 ]
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Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001 ]
Have a labeled dataset S = {(x,,¥,)}i_,

Per-element loss function £(y,y) = — log(y - y), £(y,y) = %H)Af — y||?, etc

N
. _ I .
Training loss L¢(W) _ﬁ"g‘ C(f(X:;W),Y.)
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Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
 wis all of the parameters of a dep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001 ]
Have a labeled dataset S = {(x,,¥,)}i_,

Per-element loss function £(y,y) = — log(y - y), £(y,y) = %H)Af — y||?, etc

N
Training loss L¢(W) =:72 C(f(X:;W),Y.)
i=1
Choose w to minimize L¢ with (stochastic) gradient descent
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One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(w) = N Z (f(X W)— y)
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One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(W) = N Z (f(X W)— yl)

T =1

1)

Wil = W, — — Z V. £(f0x W), 1)

t

= W ——Z ([V (Y, Y)‘y i Wt)] [wa(xiawz)

.
Wir1 =W, = — % Z [wa(Xi, W) ] (f(Xi» Wt)_yi)
i=1 i

N
JOs W) — G w) & — % Z <wa( ;W)‘ , Vi J(X;, W)
i=1 Wi

o > (f(Xia Wt)_Yi)
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One step of gradient descent in function space

1 2
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1 2
_ Full-batch gradient descent, square loss: Ly(W) = ﬁ Z (f (X, W)—yi)
i=1

]
] (fx; W)= )

W,

N
n
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One step of gradient descent in function space

1 2
_ Full-batch gradient descent, square loss: Ly(W) = ﬁ Z (f (X, W)—yi)
i=1

]
] (f(x W)—;)

W,

N
i
Wir1 =W, = — N 2 [wa(X,-, w,)
=1

/

» What does that do to f(x; w,)? //

f( ;Wt+1) =f( 9Wz) +

Vw05 W) ‘W ] (W1 — W)+ O(l| W,y — Wtuz)

N
fo W) = fosw) & = ) <wa< W VS, w > (06 w)=)
i=1 o o

. @@
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NTK regime
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NTK regime

« Defining a function k., (X, X') = <Vf(x W)\ , V(X W)|W>, we just showed
fO W) = fs w) & ——Zk (%, %) (fx,, W) =)

. “NTK regime” is when k,, = kj throughout tralnlng If so, we have

5 W) = f5 W) & ——Zko< ) (. W)=

. Let k(%) = [ko( X)) e k(%) € Rmv

S V(X1§ - (X t)] RY,

y=1V1 = VN E RN e
JOSW ) =G W) = ——ko( ), =)
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Linearized solution ~~~

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
a7 » W) = NO i
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and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

. The differential equation — f"( W) = — iko( )(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

705w = K K™ (1= ) (v = £p) + 409


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Linearized solution

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

. The differential equation — f"( W) = — iko( )(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

flin( ;Wt) — k()( )KO_I (I — e_WKO) (y — f()) +ﬁ)( )

» Ast — o0, if K is full-rank (usual case), e‘nWtKO — (),
F1m 0w, = () K™ (v = £p) +f5(0)
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Linearized solution

If ky = ko throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

The differential equation — £( W) = — iko( )(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

flin( ;Wt) — k()( )KO_I (I — e_WKO) (y — fO) +ﬁ)( )

» Ast — o0, if K is full-rank (usual case), e‘nWtKO — (),
F1m 0w, = k() K™ (v = £p) + /()

This is as gradient flow for&kernel regression — back to this soon!
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Start with depth 2, scalar output:

e The a. are
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A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a a(w X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

» The a; are signs in {—1,1}, for maximum simplicity

+ Then ky(X},Xy) = ( V,, fix;; W), V, f(xX;; W))

a de(W Xl)/\/7 a X26(W X2)/\/7

= xTx, [ Zaza’(w X,)o'(W, - xz)}
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A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

» The a; are signs in {—1,1}, for maximum simplicity

+ Then ky (X}, X)) = ( V,, fix;; W), V, fx;; W))

a de(W Xl)/\/7 a X26(W X2)/\/7

= X X2 [ Zazﬁ’(w X,)0 (W Xz)} T XX E [Gf(WTX) U,(WTX')]
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arccos kernel

For [|X,[]| =1 = [|X,||, w ~ A (0, 2]) for any v > 0, and 6(z) = ReLU(z) = max(z,0),
the NTK at initialization is

(X; - Xy))E lo'(W-x)o'(W-x,)] = (X - X,) (5 — 2—7[ arccos(x; - X2)>
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arccos kernel

For [|X,[]| =1 = [|X,||, w ~ A (0, 2]) for any v > 0, and 6(z) = ReLU(z) = max(z,0),
the NTK at initialization is

(X; - Xy))E lo'(W-x) o'(W-x,)] = (X -X,) (5 — 2—7[ arccos(x; - X2)>

This kernel has nice properties: it’s universal on {x € R : ||x|| = 1, X = l/ﬁ}
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NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
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e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

» it holds that the “empirical NTK” k, converges almost surely to k&
* Convergence might be slow, though!
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NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

» it holds that the “empirical NTK” k, converges almost surely to [k k.,
* Convergence might be slow, though!

» Can compute £k, with dynamic programming: github.com/google/neural-tangents

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
Microsoft Research Al
gregyang@migrosoft.com
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How good is the approximation?

» Remember that we linearized J around w:
fCs W) = fs Wo) + | Vi fx, W) ](W—Wo) ~ f5 W)
Wo

* Linear in w but usually not linear in x!

m
Let’s return to our simple f(x; W) = —— Z a; a(wj . X) case
\/m i
j=1

. How close is /" to f for the w we see during training?
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flin( ;W) =f( ;WO) -+ <Vf( ;WO), W — W()>
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1 m
(W) = —= D ajo(w; - %)
f w ﬁjzzlajawj

flin( ;W) =f( ;WO) -+ <Vf( ;WO), W — W()>

1 m
— T Z a; la(wo,j %) + 0o (Wo i+ %) - (W) — WOJ)]
m j=1
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1 m
(X; )=—Z'( %)
f W ﬁjZICZ]GWJ

flin( ;W) =f( ;WO) -+ <Vf( ;WO), W — W()>
Z a; la(wo,j %) +0(W ;- %)% - (W = WOJ)]
j=1
L
_ b 0 ( IG(WOJ %) — 5,(W0,j : )WO,j : ] + 6,(W0,j . )W] : )
m

o
/m

J=1
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1 m
(W) =—= D a;0(W; - %)
JOGw \M;ajawj

flin( ;W) f( . WO) + <Vf( ;W())a W = WO>

2 'lo’(Wo]-' )+ (W %) '(W'_WOJ)]

j=1

1

— ) a; (IG(WO] ) — G(WO] )WOJ ] T G(WO] )Wj | )

m

b
/m

—1
J = 0 for ReLU: 6(2)=25'(2)
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1 m
(55 W) = —= ) @;0(w; - )
foow m;ajawj

flin( : W) f( . WO) + <Vf( ;W())a W = WO>

2 'lo’(Wo]" )+ (W %) '(W'_WOJ')]

j=1

1

— ) a; (IG(WO] ) — G(WO] )WOJ ] T G(WO] )Wj | )

m

b
/m

=1
/ — 0 for RelU: 6(2)=z0'(2)

fWO(xa W) = (Vflx; Wy), W)
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1 m
(55 W) = —= ) @;0(w; - )
fow m;ajawj

flin( ,W) =f( WO)+<Vf( ;WO)aw_W())

ia- la(woj- )+6’(WOJ-' ) ‘(W'_W()j)]

Jj=1

— o(Wy,;+ %) — 0'(Wp i+ X) Wy - ]-l-G(W()] W - )
-2l J

b
\@

— 0 for ReLU: 6(2)=20'(2)
Jw (s W) = (VA W), W)

We’ll see shortly that f — f'* shrinks as m grows
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foow) = —Za(f(w
]1

. |

i ;w):—Zaj<[0(WO] ) — o (Wo ;- %) Wo; - ] + o (Wo; - )W;

=1

m i
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1 m

(W) =—= O(Wj - %)

fOow ﬁjzzlajgwj
| I <

flm( ‘W) = Tzaj ([a(w()’j- )—(;'(W(),j- )W(),j- ] -I-g’(WO,j- )Wj' )
mjzl

If o is f-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:
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1 m

(W) =—= O(Wj - %)

fOow ﬁjzzlajgwj
| I <

flm( ‘W) = TZaj ([a(w()’j- ) — (;'(Wo,j- )W(),j- ] +g'(W(),j- )Wj' )
mjzl

If o is f-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

. ] «—
[0 w) = s w) | S—= Yl | ow;) = 0(wg, ) = (W, )%+ (W, = W)
m]=1

N
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1 m
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Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1,  |f(x; w) — F"(x; w)| < W — wl|*

2\/m
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» This holds for any w and w,, but only for this shallow case
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Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1,  |f(x; w) — F"(x; w)| < W — wl|*

2\/m

» This holds for any w and w,, but only for this shallow case

. Soif ||w, — WOH2 < E m, approximation is “good enough”
o |lW, — WOH2 is bounded as m — o0, if kernel is always full-rank
. W, = Wl = ||-D(@D )1 - e‘%tKO}?(fO —y)|l  where @ stacks ¢)(x))
T~ — _
< |o@D )T, 1A =e ¥ )|, Ify =yl

< —-1-|If, — V|| for large ¢
o (D) 1Ty — ¥l g
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Full training with any architecture

e |t's generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNSs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

o for small SGD step sizes 7, "
We

: "W
« then for any x and t, it holds that f,(x) converges almost surely to ftlm( ) c

Tensor Programs Ilb:
Architectural Universality of Neural Tangent Kernel Training Dynamics

Greg Yang!™ Etai Littwin "
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Recap of overall theory

* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:

FrCswy) = k() K™ (I B e_%tKO) ¥ =fo) #4609
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* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:
Fines wy) = g () Ky ™ (1= e7F99) (3 = £) + 00

e andsoast — 00, (S)GD on the network converges to kernel regression
f0) = k() K™ (y = ) +fo(%) o) 00 )

¢) - ~ o 'EU '
“G(.ﬁ 1'& L\io—[\f_, (Y e\f)’;;_\’ed ,7/ Kﬂ L/‘-D'OCYJI z) K—o(‘?ﬁp/)('“'S
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Recap of overall theory

* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:
Fines wy) = g () Ky ™ (1= e7F99) (3 = £) + 00
e andsoast — 00, (S)GD on the network converges to kernel regression

F00) = k) K™ (v = £y) + £,
 predictions on training set: KOKO_I(y — )+t =y—f,+1f,=y
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Vector outputs

« Network can have O > 1 outputs

o () =V fOs Wl € RP, T ky(X), X)) = hy(X))hy (X)) € RYXC

. Usually write K, € RNONO ' (x) € RPXM0 y € RVO

nt

Then  fin(; w) = k() K, ™! (1 _ e_WKO) (y = £,) +£,() € RO

18



Other loss functions

* (Can use other losses than square loss; get same kind of ODE

N
d .. 7 A
— [ w) = = k()| Vi L@ v)|
dt N §7=f(Xl-,Wt) i=1
 Doesn’t necessarily have a closed form anymore
 Square loss isn’t such a bad loss, even for classification!

 Hui and Belkin (2020)
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Kernel regression
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Kernel methods

Kernel models are linear models in feature space
‘W oKW
A usual real-valued linear model is f(X; W) = (X, w) =7

Kernel models are f(x; w) = (¢(X), w) for some fixed feature map ¢(x)

» For example, polynomial features like @(X) = (l,x, xz)
D

e Can in general map to , hot just |
 More on this later!

The kernel function is k(X, X') = (d(Xx), ¢(Xx'))

* Not the same as kernel density estimation, convolutional kernels,
kernel of a linear map (null space), the Linux kernel, ...

The space of functions f(X; W) = (¢(X), w) for all possible w
IS known as a reproducing kernel Hilbert space (RKHS)

21
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Kernel regression

N
For a fixed ¢, minimize Ly(w) = % Z (P(x), W)-y)2
i=1

» If D > N, there are typically infinitely many w with L¢(w) = 0
« One strategy: start at some w, and do gradient descent until you hit one
2
o 1T <

gradient descent converges to (proof via SVD)

Gmax X)2 |
w = argmin||lw — wy|| = ®'K~ly + (I - ®'K~'d)w, -
w:Ow=y . x) ce('x)T g@

. Predictions are {(p(x), W) = k(x) K~y + fo(x) — &

K_lfo c [CZCK)'T@(F')
. i.e. exactly f( ) = k(x) K™ (y — f()) + fo(x) from before

@Cx}“ ‘)
- 5 ()
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Kernel ridge regression

» The more common way to choose a solution is ridge regression: for 4 > 0,

, 1§
W, = algli N Z (W, p())=v)” + Allw — wl°

w i=1

=w,+ D' (K + N (y—D "'wp)
(Wi (1)) = fo(0) + k() (K 4+ NAD ™ (y — £)
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Kernel ridge regression

e The more common way to choose a solution is ridge regression: for 4 > 0,

W, = al‘gmm— ((W, (x)) =) + Allw — W[
W =1

=w,+ ® (K + NAD (y—D "w,)
(Wi, () = fo(0) + k() (K + NAD ™ (y — )
 An equivalent view, kernel ridge regression:
e« The RKHS 7 is a Hllbert space and so has a norm ||f]| &

fi= argmm— Z (fe)=y )2 + Af = foll%

fex
+ RKHS norm for f(+) = (w, p ) is [1fll5 = 1wl
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Kernel ridge regression

e The more common way to choose a solution is ridge regression: for A > 0,

W, = argmm—Z«w H(x))—y) + Allw — w1

W =1
=wy+ ©®' (K + NAD) ' (y—D"'w,)
(Wi, () = fo(0) + k() (K + NAD ™ (y — )
 An equivalent view, kernel ridge regression:
e« The RKHS 7 is a Hllbert spaoe and so has a norm ||f]| &

)= argmm— Z (fe)=y )2 + Af = foll%

fex

+ RKHS nomm for f(1) = (w. ()} is [l = Il
» Note: equivalent to use wy = 0/ fy(x) = 0 but fit residuals y; — fo(X,)

23




Kernel “ridgeless” regression

. Running small-LR gradient descent from w, gives same predictions as limfll:

A A—0
10 = k() (K + NAD™!(y — £o) + fo(1)
F0) = k() K™ (y = 1) +£5()
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Kernel “ridgeless” regression

. Running small-LR gradient descent from w, gives same predictions as limf/l:

A A—0
10 = k() (K + NAD™!(y — £o) + fo(1)
F0) = k() K™ (y = 1) +£5()

 \We know some stuff about kernel predictors,
e.g. what kinds of functions they can learn without overfitting

» (it’s the functions with small ||f — fy|| )

24
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Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

e Aswidthm — 00, D — o0 as well
» But k, doesn’t change too much as m — 0!

* We can still do stuff in infinite-dimensional RKHSes!
. Gaussian kernel k(X{,X,) = exp(—%ﬂzﬂxl — X2H2) is also infinite-dim
. We just only use kernel form: f(x) = k(x) K~! (y — fo) + fo (%)

 Representer theorem implies that

N
f( ) — Jo(¥) = Za,-k( , X)) =Kk(x)-a forsomea € | N
i=1

25



Uses and limitations of infinite NTKs




Great method for small-data tasks

Classifier Friedman Rank | Average Accuracy P90 P95 PMA
NTK 28.34 81.95%+14.10% | 88.89% | 72.22% | 95.72% £5.17%
NN (He init) 40.97 80.88%114.96% 81.11% | 65.56% 94.34% +7.22%
NN (NTK init) 38.06 81.02%+14.47% 85.56% | 60.00% 94.55% +5.89%
RF 33.51 81.56% +13.90% | 85.56% | 67.78% 95.25% +5.30%
Gaussian Kernel 35.76 81.03% 4+ 15.09% | 85.56% | 72.22% | 94.56% +8.22%
Polynomial Kernel 38.44 78.21% £ 20.30% | 80.00% | 62.22% | 91.29% £18.05%

Table 1: Comparisons of different classifiers on 90 UCI datasets. P90/P95: the number of datasets a classifier
achieves 90%/95% or more of the maximum accuracy, divided by the total number of datasets. PMA: average
percentage of the maximum accuracy.

27


https://arxiv.org/abs/1910.01663

Good for distinguishing distributions

CIFAR ME SCF C2ST-S C2ST-L M-O M-D SRF SCNTK
2000 | 0.588 0.171 0.452 0.529 0.316 0.744 0.440 0.805
o N e e Kok e 7 AR Rt S0 O
pared for the outlier detectic;n task with CIFAR10 and SVHN i -- WQIE &q- 129, ’E.
datasets. With a ﬁx.ed kernel, SCNTK shows a promising results g -E-. , &m?" . FH
for OOD d both : s % e
"l Outier | Gawssin vk sovik ¢ RGN S e LR G
CIFAR10 SVHN 0.82 0.71 0.85
SVHN CIFARIO | 0.20 0.51 0.80 - VIEIEEIR) 2t e CREE 2 o
kR 603 ) EE o ol E@I 35 4
X s B r
25 Zo
3
Sl 7 /08 llﬂﬂ‘ﬂ 2. .ﬁ.! ﬂl
Rl o372 oAl Ts o

Figure 1: The images generated by different methods on MNIST, CIFAR-10, and CelebA datasets
given only 256 training images.
20



Useful signal for tr
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Figure 2. Trainability and generalization are captured by k") and P(@(l) ). (a,b) The training and test accuracy of CNN-F trained
with SGD. The network is untrainable above the green line because kY is too large and 1s ungeneralizable above the orange line because
P(@(l)) 1s too small. (c) The accuracy vs learning rate for FCNs trained with SGD sweeping over the weight variance. (d,e) The test
accuracy of CNN-P and CNN-F using kernel regression. (f) The di‘fg@rence in accuracy between CNN-P and CNN-F networks.



Drawback: computation

» For a scalar problem, the kernel matrix K is N X N

. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK

« With “normal” deep learning, everything is O(/N)

30



Drawback: computation

» For a scalar problem, the kernel matrix K is N X N

. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK
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 One possible help: “sketching” approximations

o k(%) = w(x,) - w(x,) with y(x) € RP
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Drawback: computation

» For a scalar problem, the kernel matrix K is N X N
. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK
« With “normal” deep learning, everything is O(/N)
 One possible help: “sketching” approximations

/\
n * . .
® k( ) S W( ) o W( ) W I -t h w( ) E L p (*) means that the result is copied from Arora et al. [5].
2 CNTKSKETCH (ours) GRADRF Exact CNTK CNN

Feature dimension 4,096 8,192 16,384 9,328 17,040 42,816

Test accuracy (%) 67.58 7046  72.06 6249  62.57 65.21 70.47* 63.81%
Time (s) 780 1,870 5,160 300 360 580 > 1,000,000

Table 2: MSE and runtime on large-scale UCI datasets. We measure the entire time to solve kernel
ridge regression. (—) means Out-of-Memory error.

MillionSongs WorkLoads CT Protein
# of data points (n) 467,315 179,585 53,500 39,617
MSE Time (s) MSE Time (s) MSE Time(s) MSE Time (s)

RBF Kernel — — - - 3537  59.23 18.96  46.45
RFF 109.50 231 4.034 x 104 53.0 48.20 15.2 19.72 12.1

NTK - - - - 3052  72.10 2024  76.93
NTKREF (ours) 94.27 95 3.554 x 10% 35.7 46.91 2.12 20.51 4.3

NTKSKETCH (ours) 92.83 36 3.538 x 10% 27.5 46.52 18.8 21.19 14.91
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S0, Is deep learning just kernels?

e No.

* Real neural net optimization isn’t in the “NTK regime”

 Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+ %
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...
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A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||w*|| = d°, |b*| < 6d* + 1

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il
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e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||[w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples

e Kernel-based methods require at least one of
e exponentially many samples
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A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||[w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples

e Kernel-based methods require at least one of
e exponentially many samples

e exponentially large RKHS norm (i.e. hard to learn)

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il
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Quantifying the Benefit of
Using Differentiable Learning over Tangent Kernels

Eran Malach Hebrew University of Jerusalem eran.malach@mail.huji.ac.il
Pritish Kamath Toyota Technological Institute at Chicago pritish@ttic.edu
Emmanuel Abbe EPFL emmanuel .abbe@epfl.ch
Nathan Srebro Toyota Technological Institute at Chicago nati@ttic.edu

Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)

NTK at same NTK at alternate NTK of arbitrary model
Initialization randomized Initialization | or even an arbitrary Kernel

GD with unbiased | > NTK edge > poly™

initialization (Thm. 1) » Edge with any kernel can be < poly "
(V2 fo,(z) = 0) » NTK edge can be < poly while GD reaches 0 loss

ensures small error while GD reaches 0 loss (Separation 2)
(Separation 1)

Kernel (or » NTK edge > poly !
alt init) (Thm. 2)

GD with | .ap depend » NTK edge can be < poly ™" while GD reaches 0 loss

Edge can be < poly ™

bitr :
arbiaaty | n input while GD reaches 0 loss (Separation 2)

grlll;ilres dist. Dy NTK edge can be = 0 (Separation 2)

small while GD reaches arb. low loss
error (Separation 3) edge with any kernel can be < exp™*

Dist-indep while GD reaches arb. low loss
kernels (Separation 4)




Uses of empirical NTKs



One application: active learning
/train > Model f quml

Labeled set L Unlabeled set ‘U

—0

S~ -

label Oracle selected data

Making Look-Ahead Active Learning Strategies
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* Danica J. Sutherland
University of British Columbia  University of British Columbia UBC & Amii
lemohama@cs.ubc.ca whbae@cs.ubc.ca dsuth@cs.ubc.ca
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One application: active learning
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Active learning: look-ahead criteria

» Given a model f(x; W) trained on §

» What our model would be if we retrainedon ST =S U {(x",y")}?
* Joo expensive to actually retrain

 We can take a Taylor expansion around current weights w
e Then ask questions aboutfli”( : W) to pick which point to query

_ e.g. measure Z A7 W) — fO w)||
cU
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Active Iearnlng with empirical NTKs

Naive NTK w/o Block

96 1 - 3hr
— 94 -
X 0 >
o
8 - l7m1n E
< 901 |

88 1

- 2min
36 - :

01 23456789
Cycle

(a) Naive look-ahead acquisition versus NTK
approximation. Bars show runtime per cycle.

* Far faster + better performance than actually retraining with the new data
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Naive NTK w/o Block

96 1 - 3hr
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X >
8 l7m1n E
< 901 '

88

- 2min
36 1 :

01 23456789
Cycle

(a) Naive look-ahead acquisition versus NTK
approximation. Bars show runtime per cycle.

* Far faster + better performance than actually retraining with the new data

 Much better “understanding” of retraining behaviour than infinite NTK or one
step of SGD
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Acc (%)

Active Iearnlng with empirical NTKs

Naive NTK w/o Block —o— NN NTK —eo— NN 1-Step —e =~ GP

NN Inf NTK == NN (Random) =®-= GP (Random)
06 - 3hr 98
94 | 76
) - — g
’ min = 2 92 —~— ="
90 — ”~
o 8 90 | — ')'—- 3
] \ - ' —
86‘ | | | | | | | | | | | min 86_ / /"____0"
0]23é5]6789 84-4/"//
cle |
/ e e e e e e
(a) Naive look-ahead acquisition versus NTK o 1 2 3 4 5 6 7 s 9
approximation. Bars show runtime per cycle. Cycle

* Far faster + better performance than actually retraining with the new data

 Much better “understanding” of retraining behaviour than infinite NTK or one
step of SGD
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Active learning with empirical NTKs

 Matches or beats other active learning methods

~—— NTK ~— BADGE -——— Margin —— NTK ~—— BADGE -——— Margin —— NTK — BADGE ~—— Margin
Random —— Entropy —— LL4AL Random —— Entropy Random —  Entropy
2 .
3 7
7~ 1- ~~ 2-' P~
X X X
<0 / — | o L o 1
&) | &) O
<ﬁ 81 /88 90 91 91 /91 92 92 92 93(% < 0‘ <
< -1 - / < 55 65 71 75 78 80 82 83 84 85(% <
-1 0-
60 ¥ X ) ] 66 66 67(%)
— 9.
01 23456 7 89 01 23456 7 89 0 1 2 3 4 5 6 7
Cycle Cycle Cycle
(a) SVHN: 1-layer WideResNet  (b) CIFAR10: 2-layer WideResNet (c) CIFAR100: ResNetl8

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy i1s shown in text.
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Predictin

Pretrained ResNet-34 on CIFAR-100
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Figure 1. Predicted vs. actual generalization risk of a pretrained
ResNet-34 empirical NTK on CIFAR-100 over dataset sizes /N and
ridge regularizations A. Corresponding training risks are plotted in
the background. The fit achieving the lowest MSE has 19.9% test
error on CIFAR-100 (vs. 15.9% from finetuning the ResNet).

FashionMNIST / ResNet-18 init.

CIFAR-10 / ResNet-18 pretr.

eneralization

Flowers-102 / ResNet-50 pretr. Food-101 / ResNet-101 pretr.
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Figure 4. Generalization risk vs. the GCV prediction, for various datasets and networks, across sample sizes /N and regularization levels \.

 Uses generalized cross-validation to
estimate how well a network will generalize
on a new dataset after you fine-tune it

More Than a Toy: Random Matrix Models Predict How
Real-World Neural Representations Generalize

Alexander Wei! Wei Hu'! Jacob Steinhardt '
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Computing empirical NTKs

 If we have O outputs, K is NO X NO
« CIFAR-10: N = 60,000, O = 10: 2.8 terabytes in memory
e Imagenet: N ~ 1,200,000, O = 1000: 11,520,000 terabytes in memory

» For the infinite NTK, we can actually ignore the O part

« Has form K @ I because of the last layer — corresponds to doing an
iIndependent kernel regression for each component

 CIFAR-10 becomes 29 gigabytes, ImageNet 11.52 terabytes

» For empirical NTK, we can get rid of the O too!
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Pseudo-NTK

] & ] &
kyCiox) = | Vy—= ) fCsw) | - | Vyo—= D f(:w)
VO j=i VO j=i
* The kernel, its largest eigenvalue, and kernel regression outputs
all converge to the full eNTK result at rate O(1/4/m) NTK NTK

- 50min
96 - .
- 38min
g @
\J - 26min E
O i
2 92 ,
90 - - 14min
88 - -
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel IR I I I I min
Cycle
Mohamad Amin Mohamadi! Wonho Bae'! Danica J. Sutherland ! Figure 12: Comparison of pNTK with eNTK on a look-

ahead active learning task. pNTK is much faster than
41 eNTK without losing performance.



Pseudo-NTK: kernel approximation

FCN ConvNet ResNetl8 WideResNet
.21 —— WD 256 —— WD 2048 0.951 0.7 .01
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Figure 3: Evaluating the relative difference of Frobenius norm of ©y(D, D) and ©4(D, D) ® I at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar |©¢|| 7 and
|©¢ ® Ip||F at initialization.
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Pseudo-NTK: regressmn resu
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Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random CIFAR-
10 points and testing on |X'| = 500. For wider NN, the relative difference in f%"(X) and f""(X) decreases at initialization.
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Surprisingly, the difference between these two continues to quickly vanish while training the network.
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Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of £ and f%" at initialization. Again, the
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difference between these two continues to vanish throughout the training process using SGD.
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seudo-NTK on full CIFAR-10

FCN ConvNet ResNetl8 WideResNet
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f“" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".
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Figure 10: Evaluating the test accuracy of model f throughout SGD training on the full CIFAR-10 dataset. In contrast
to £%", the test accuracy of f does not significantly improve with growing width.
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Understanding learning dynamics

* Interesting insights, worth reading — but based on NTKs from 500 samples
only, since they didn’t have the pNTK!

* In particular, it seems empirical NTK does meaningfully change later in the
process than they were able to notice

Deep learning versus kernel learning: an empirical
study of loss landscape geometry and the time
evolution of the Neural Tangent Kernel

Stanislav Fort'*  Gintare Karolina Dziugaite’* Mansheej Paul'
Sepideh Kharaghani>  Daniel M. Roy>*  Surya Ganguli'
I Stanford University 2Element AI 3University of Toronto “Vector Institute
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Understanding learning dynamics
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Understanding learning dynamics

Proposition 1. Let z'(x) = f(w?,x) denote the network output logits with parameters W', and
q’(x) = Softmax(z'(x)) the probabilities Let witl = wt — 0V, (P, (%) "L(Q(xy))) be the

result of applying one step of SGD to w' using the data point (xu, P,..(X.)) with learning rate 7.
Then the change in network predictions for a particular sample x,, is

q"" (%) =" (%) = n A (x0) K (%0, %u) (Prar(%u) — " (xu)) + O [ Vwz(xu)l5p),
where At(x,) = V,qt(x,) and Kt (x,, %) = (Vwz(%,)|lwt) (Vwz(Xe)|wt) ' are K x K matrices.

e epoch start
S
+ epoch end
e Xo update start
- $,0 ~  Xo update end
epoch 1: -H-—o —— Other Xu update

L
epoch 3 "LF\,
~ epoch 10: %""

epoch 90: <4-@e—e

Figure 4. Updates of q(x,) over training.
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Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:

flin( ;Wt) — k()( )K()_l (I — e_nWtKo) (y — fO) +f0( )
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* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
: —1 _nt
Fines wy) = k() K™ (1= e7F9) (v = £) + £
e andsoasf — o0, (S)GD on the network converges to kernel regression
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Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
: —1 _nt
Fines wy) = k() K™ (1= e7F9) (v = £) + £
e andsoasf — o0, (S)GD on the network converges to kernel regression

F00) =k, () K, (y = 1) + ()

+ predictions on training set: K K, '(y = f)+f, =y —f,+f, =y
* This can’t explain all of real deep learning
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Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
1w = k(O K™ (T= e7F59) (3 = 1) + 509
e andsoasf — o0, (S)GD on the network converges to kernel regression
F) = k() K™ (v = £p) + £
+ predictions on training set: K K, '(y = f)+f, =y —f,+f, =y

* This can’t explain all of real deep learning
 But it’s a useful tool, especially local approximations with empirical NTK
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