Neural Tangent Kernels,
Finite and Infinite

IS| Winter School on Deep Learning
February 2023
Danica Sutherland
cs.ubc.ca/~dsuth/; these slides are under “talks” section

https://www.cs.ubc.ca/~dsuth/

What happens when training a neural net?

 \We use gradient descent (or similar) to try to find the best network

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

What happens when training a neural net?

 \We use gradient descent (or similar) to try to find the best network

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

What happens when training a neural net?

 \We use gradient descent (or similar) to try to find the best network

* Loss landscape might be complicated (is non-convex)
 Where do we actually end up?
 Neural tangent kernel theory lets us approximate this process

2

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

Does training neural nets work?

https://arxiv.org/abs/1911.01413

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0

https://arxiv.org/abs/1911.01413

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0
 Could be a global minimum, a local minimum, or a saddle point

https://arxiv.org/abs/1911.01413

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0

 Could be a global minimum, a local minimum, or a saddle point
 Bad local minima do exist Sub-Optimal Local Minima Exist for Neural

Networks with Almost All Non-Linear Activations

Tian Ding* Dawei Li T Ruoyu Sun *

/\/

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
Mobile User

Mobile User

Mobile User

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0

 Could be a global minimum, a local minimum, or a saddle point
 Bad local minima do exist Sub-Optimal Local Minima Exist for Neural
e But does SGD find them? Networks with Almost All Non-Linear Activations

Tian Ding* Dawei Li T Ruoyu Sun *

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0
 Could be a global minimum, a local minimum, or a saddle point

 Bad local minima do exist Sub-Optimal Local Minima Exist for Neural
e But does SGD find them? Networks with Almost All Non-Linear Activations
Tian Ding* Dawei Li T Ruoyu Sun *

e Several papers around 2018-19 showed:

 If the network is very overparameterized (width > N, possibly — o)

e and we use an appropriate random Iinitialization
* with square loss

* then (S)GD finds a global minimum

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Does training neural nets work?

* Gradient descent will find a stationary point: one where gradient = 0
 Could be a global minimum, a local minimum, or a saddle point

 Bad local minima do exist Sub-Optimal Local Minima Exist for Neural
e But does SGD find them? Networks with Almost All Non-Linear Activations
Tian Ding* Dawei Li T Ruoyu Sun *

e Several papers around 2018-19 showed:

 If the network is very overparameterized (width > N, possibly — o)
e and we use an appropriate random Iinitialization
* with square loss
* then (S)GD finds a global minimum
* Implicit in these papers:
* Behaviour of deep nets converges to kernel ridge regression with the

neural tangent kernel
3

https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413

Problem setting

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

» Notation for this talk: f(x; W) is a function with parameters w evaluated at x

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

» Notation for this talk: f(x; W) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

» Notation for this talk: f(x; W) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

» Notation for this talk: f(x; W) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.87335,---,0.0001]

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001]
Have a labeled dataset S = {(x,,¥,)}i_,

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG

Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001]
Have a labeled dataset S = {(x,,¥,)}i_,

Per-element loss function £(y,y) = — log(y - y), £(y,y) = %H)Af — y||?, etc

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
W is all of the parameters of a deep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001]
Have a labeled dataset S = {(x,,¥,)}i_,

Per-element loss function £(y,y) = — log(y - y), £(y,y) = %H)Af — y||?, etc

N
. _ I .
Training loss L¢(W) _ﬁ"g‘ C(f(X:;W),Y.)

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

Problem setting

Notation for this talk: f(x; w) is a function with parameters w evaluated at x
 wis all of the parameters of a dep net, all stacked together

e X IS one particular input, e.qg.
 f(X; W) is the output of the network, e.g. [0.0002,---,0.8735,---,0.0001]
Have a labeled dataset S = {(x,,¥,)}i_,

Per-element loss function £(y,y) = — log(y - y), £(y,y) = %H)Af — y||?, etc

N
Training loss L¢(W) =:72 C(f(X:;W),Y.)
i=1
Choose w to minimize L¢ with (stochastic) gradient descent

4

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User

One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(w) = N Z (f(X W)— y)

One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(W) = N Z (f(X W)— yl)

T =1

Wil = W, — — Z V. £(f0x W), 1)

t

One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(W) = N Z (f(X W)— yl)

T =1

1)

Wil = W, — — Z V. £(f0x W), 1)

t

= W ——Z ([V (Y, Y)‘y i Wt)] [wa(xiawz)

One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(W) = N Z (f(X W)— yl)

T =1

1)

Wil = W, — — Z V. £(f0x W), 1)

t

=W ——Z ([V (Y, Y)‘y i Wt)] [wa(xiawz)

.
Wit1 — %Z [V J(x;, W)] (f(Xi’ Wt)_Yi)

One step of gradient descent

_ Full-batch gradient descent, square loss on scalars: Lg(W) = N Z (f(X W)— yl)

T =1

1)

Wil = W, — — Z V. £(f0x W), 1)

t

= W ——Z ([V (Y, Y)‘y i Wt)] [wa(xiawz)

.
Wir1 =W, = — % Z [wa(Xi, W)] (f(Xi» Wt)_yi)
i=1 i

N
JOs W) — G w) & — % Z <wa(;W)‘ , Vi J(X;, W)
i=1 Wi

o > (f(Xia Wt)_Yi)

5

One step of gradient descent in function space

1 2
_ Full-batch gradient descent, square loss: Ly(W) = ﬁ Z (f (X, W)—yi)

T =1
] (fx; W)=)

N
n
Wir1 =W, = — N 2 [wa(xi, w,)
=1

» What does that do to f(x; w,)?

One step of gradient descent in function space

1 2
_ Full-batch gradient descent, square loss: Ly(W) = ﬁ Z (f (X, W)—yi)
i=1

]
] (fx; W)=)

W,

N
n
Wir1 =W, = — N Z [wa(xi, w,)
=1

» What does that do to f(x; w,)?

N
foa W) = foiw) & = " <wa(W)| LV fix, W) > (f0 w)=)
=1 i i

0

One step of gradient descent in function space

1 2
_ Full-batch gradient descent, square loss: Ly(W) = ﬁ Z (f (X, W)—yi)
i=1

]
] (f(x W)—;)

W,

N
i
Wir1 =W, = — N 2 [wa(X,-, w,)
=1

/

» What does that do to f(x; w,)? //

f(;Wt+1) =f(9Wz) +

Vw05 W) ‘W] (W1 — W)+ O(l| W,y — Wtuz)

N
fo W) = fosw) & =) <wa< W VS, w > (06 w)=)
i=1 o o

. @@

0

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

NTK regime

« Defining a function k., (X, X') = <Vf(x W)\ , VI(X'; w)| > we just showed

f W) = [W) & ——Zk (%) (fx, W)= ,)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

NTK regime

« Defining a function k., (X, X') = <Vf(x W)\W, VX, w)] > we just showed
fO W) = fs w) & ——2 w 06 %) (F0x, W)= ,)

. “NTK regime” is when k,, = kj throughout tralnlng. If so, we have

N
05 We) = 055 W) R = 2 Fo X (05 W)

NTK regime

« Defining a function k., (X, X') = <Vf(x W)\ , V(X W)|W>, we just showed
fO W) = fs w) & ——Zk (%, %) (fx,, W) =)

. “NTK regime” is when k,, = kj throughout tralnlng If so, we have

5 W) = f5 W) & ——Zko<) (. W)=

. Let k(%) = [ko(X)) e k(%) € Rmv

S V(X1§ - (X t)] RY,

y=1V1 = VN E RN e
JOSW) =G W) = ——ko(), =)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

v

Linearized solution ~~~

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
a7 » W) = NO i

Mobile User

Mobile User

Linearized solution

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

Linearized solution

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

. The differential equation — f"(W) = — iko()(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

705w = K K™ (1=) (v = £p) + 409

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearized solution

» If ky, & kj throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

. The differential equation — f"(W) = — iko()(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

flin(;Wt) — k()()KO_I (I — e_WKO) (y — f()) +ﬁ)()

» Ast — o0, if K is full-rank (usual case), e‘nWtKO — (),
F1m 0w, = () K™ (v = £p) +f5(0)

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearized solution

If ky = ko throughout training,
and we take a continuous limit instead of discrete steps (gradient flow),

2 fsw) m =Lk oo — v
7 » W) = NO i

Let’s define an explicit approximation: f**(x; w) = f ;W) + Vi, (5, W)

Wo

The differential equation — £(W) = — iko()(fﬁm — V) has a closed-form solution:

dz N
letting (K);; = k(X X)),

flin(;Wt) — k()()KO_I (I — e_WKO) (y — fO) +ﬁ)()

» Ast — o0, if K is full-rank (usual case), e‘nWtKO — (),
F1m 0w, = k() K™ (v = £p) + /()

This is as gradient flow for&kernel regression — back to this soon!

A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)

\/mjl

A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

A wide, shallow netwcrk

Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)
d -

IS part of the vector of all parameters, w E RP for D = md

» The a; are signs in {—1,1}, for maximum simplicity

A wide, shallow netwcrk
f(X; W) = —Za a(w X)

Start with depth 2, scalar output:

e The a. are

J

4is part of the vector of all parameters, w € |

T2

+ Then ky (X}, X)) = (V,, fix;; W), V, fx;; W))

Dtor D = md

signs in {—1,1}, for maximum simplicity

A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

» The a; are signs in {—1,1}, for maximum simplicity

+ Then ky(X},Xy) = (V,, fix;; W), V, f(X,; W))

a de(W Xl)/\/7 a X26(W X2)/\/7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a a(w X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

» The a; are signs in {—1,1}, for maximum simplicity

+ Then ky(X},Xy) = (V,, fix;; W), V, f(xX;; W))

a de(W Xl)/\/7 a X26(W X2)/\/7

= xTx, [Zaza’(w X,)o'(W, - xz)}

9

Mobile User

A wide, shallow netwcrk

_ Start with depth 2, scalar output: f(X; W) = —— Z a G(W X)
VM =1
d -

IS part of the vector of all parameters, w & | Dtor D = md

» The a; are signs in {—1,1}, for maximum simplicity

+ Then ky (X}, X)) = (V,, fix;; W), V, fx;; W))

a de(W Xl)/\/7 a X26(W X2)/\/7

= X X2 [Zazﬁ’(w X,)0 (W Xz)} T XX E [Gf(WTX) U,(WTX')]

9

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

arccos kernel

For [|X,[]| =1 = [|X,||, w ~ A (0, 2]) for any v > 0, and 6(z) = ReLU(z) = max(z,0),
the NTK at initialization is

(X; - Xy))E lo'(W-x)o'(W-x,)] = (X - X,) (5 — 2—7[arccos(x; - X2)>

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

arccos kernel

For [|X,[]| =1 = [|X,||, w ~ A (0, 2]) for any v > 0, and 6(z) = ReLU(z) = max(z,0),
the NTK at initialization is

(X; - Xy))E lo'(W-x) o'(W-x,)] = (X -X,) (5 — 2—7[arccos(x; - X2)>

This kernel has nice properties: it’s universal on {x € R : ||x|| = 1, X = l/ﬁ}

10

NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
Microsoft Research Al
gregyang@migrosoft.com

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

» it holds that the “empirical NTK” k, converges almost surely to k&

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
Microsoft Research Al
gregyang@migrosoft.com

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

» it holds that the “empirical NTK” k, converges almost surely to k&
* Convergence might be slow, though!

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
Microsoft Research Al
gregyang@migrosoft.com

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

NTK at inttialization

e |t’s generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

» it holds that the “empirical NTK” k, converges almost surely to [k k.,
* Convergence might be slow, though!

» Can compute £k, with dynamic programming: github.com/google/neural-tangents

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang™
Microsoft Research Al
gregyang@migrosoft.com

https://arxiv.org/abs/1910.12478
https://github.com/google/neural-tangents

How good is the approximation?

» Remember that we linearized J around w:
fCs W) = fs Wo) + | Vi fx, W)](W—Wo) ~ f5 W)
Wo

* Linear in w but usually not linear in x!

m
Let’s return to our simple f(x; W) = —— Z a; a(wj . X) case
\/m i
j=1

. How close is /" to f for the w we see during training?

12

1 m
(X;)=—Z'(%)
f W ﬁjZICZ]GWJ

flin(;W) =f(;WO) -+ <Vf(;WO), W — W()>

13

1 m
(W) = —= D ajo(w; - %)
f w ﬁjzzlajawj

flin(;W) =f(;WO) -+ <Vf(;WO), W — W()>

1 m
— T Z a; la(wo,j %) + 0o (Wo i+ %) - (W) — WOJ)]
m j=1

13

1 m
(X;)=—Z'(%)
f W ﬁjZICZ]GWJ

flin(;W) =f(;WO) -+ <Vf(;WO), W — W()>
Z a; la(wo,j %) +0(W ;- %)% - (W = WOJ)]
j=1
L
_ b 0 (IG(WOJ %) — 5,(W0,j :)WO,j :] + 6,(W0,j .)W] :)
m

o
/m

J=1

13

1 m
(W) =—= D a;0(W; - %)
JOGw \M;ajawj

flin(;W) f(. WO) + <Vf(;W())a W = WO>

2 'lo’(Wo]-')+ (W %) '(W'_WOJ)]

j=1

1

—) a; (IG(WO]) — G(WO])WOJ] T G(WO])Wj |)

m

b
/m

—1
J = 0 for ReLU: 6(2)=25'(2)

13

1 m
(55 W) = —=) @;0(w; -)
foow m;ajawj

flin(: W) f(. WO) + <Vf(;W())a W = WO>

2 'lo’(Wo]")+ (W %) '(W'_WOJ')]

j=1

1

—) a; (IG(WO]) — G(WO])WOJ] T G(WO])Wj |)

m

b
/m

=1
/ — 0 for RelU: 6(2)=z0'(2)

fWO(xa W) = (Vflx; Wy), W)

13

1 m
(55 W) = —=) @;0(w; -)
fow m;ajawj

flin(,W) =f(WO)+<Vf(;WO)aw_W())

ia- la(woj-)+6’(WOJ-') ‘(W'_W()j)]

Jj=1

— o(Wy,;+ %) — 0'(Wp i+ X) Wy -]-l-G(W()] W -)
-2l J

b
\@

— 0 for ReLU: 6(2)=20'(2)
Jw (s W) = (VA W), W)

We’ll see shortly that f — f'* shrinks as m grows

13

foow) = —Za(f(w
]1

. |

i ;w):—Zaj<[0(WO]) — o (Wo ;- %) Wo; -] + o (Wo; -)W;

=1

m i

14

1 m

(W) =—= O(Wj - %)

fOow ﬁjzzlajgwj
| I <

flm(‘W) = Tzaj ([a(w()’j-)—(;'(W(),j-)W(),j-] -I-g’(WO,j-)Wj')
mjzl

If o is f-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

14

Mobile User

1 m

(W) =—= O(Wj - %)

fOow ﬁjzzlajgwj
| I <

flm(‘W) = TZaj ([a(w()’j-) — (;'(Wo,j-)W(),j-] +g'(W(),j-)Wj')
mjzl

If o is f-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

.] «—
[0 w) = s w) | S—= Yl | ow;) = 0(wg,) = (W,)%+ (W, = W)
m]=1

N

14

1 m
(W) =——) a;0(W; - %)
fOow mjzzlajcfwj

.] &
s w) = —Zdj (IU(WO,]") — 0'(W(),j‘)Wo,j‘] T 0'(W(),j')Wj°)
\% j=1
If o is J-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| = J 6"(2)(s — 2)dz

.] &
fOes w) — ;W)‘ S—Zlaj\ ‘G(Wj-) — 0(Wg ;%) — ' (W ;-)x-(W; — W))
m]=1

N

14

1 m
(W) =——) a;0(W; - %)
fOow mjzzlajcfwj

.] &
s w) = —Zdj (IU(WO,]") — 0'(W(),j‘)Wo,j‘] +0,(W0,j')Wj°)
\% j=1
If o is J-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| = J 6"(2)(s — 2)dz <L

5(7’ — S)2

. 1 &
fOes w) — ;W)‘ S—Zlaj\ ‘G(Wj-) — 0(Wg ;%) — ' (W ;-)x-(W; — W))
\Mj=1

14

1 m
(W) =——) a;0(W; - %)
fOow mjzzlajcfwj

.] &
flm(W) = —— 2 d; (IU(WO,]") — 0'(W(),j‘)Wo,j‘] T 0'(W(),j')Wj°
\V M =1
If o is J-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| = J 6"(2)(s — 2)dz <L

5(7’ — S)2

. 1 &
‘f(W) — [;W)‘ S—Zlaj\ ‘G(Wj-) — 0(Wg ;%) — ' (W ;-)x-(W; — W))

I 31
< —=) S AW =Wy)

14

1 m
(W) =——) a;0(W; - %)
fOow mjzzlajcfwj

.] &
s w) = —Zdj (IU(WO,]") — 0'(W(),j‘)Wo,j‘] T 0'(W(),j')Wj°)
\% j=1
If o is J-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| = J 6"(2)(s — 2)dz <L

5(7’ — 5)2

.] «
‘f(W) — [QW)‘ S—ij‘ ‘G(Wj') — 0(Wy ;%) — 0 (W i %)% (W; — W ;)
\%]ﬂ

z’””:% Wjt X=Wo " %) S

2 2
A

1 m
(W) =——) a;0(W; - %)
fOow mjzzlajcfwj

.] &
s w) = —Zdj (ld(w(),j') — 0'(W(),j‘)Wo,j‘] T 5'(W(),j')Wj°)
\% j=1
If o is J-smooth (meaning |67(2)| < fforallz), [a;] < 1,and |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| = J 6"(2)(s — 2)dz <L

5(’” — S)2

|]
‘f(W) — [QW)‘ S—ij‘ ‘G(Wj') — (W ;+x) — 0’ (W ;- %) '(Wj_WO,j)‘
\@
TP r< =2

— 1
;5 W, X—W 2\/— 2\/%

2
W = woll

Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1, |f(x; w) — F"(x; w)| < W — wl|*

2\/m

15

Linearization quality =g

» For a two-layer net with #-smooth hidden activations, =

~

d

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1, |f(x; w) — F"(x; w)| < W — wl|*

2\/m

» This holds for any w and w,, but only for this shallow case

15

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1, |f(x; w) — F"(x; w)| < W — wl|*

2\/m

» This holds for any w and w,, but only for this shallow case

. Soif ||w, — WOH2 < —y\/m, approximation is “good enough”

p

15

Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1, |f(x; w) — F"(x; w)| < W — wl|*

2\/m

» This holds for any w and w,, but only for this shallow case

. Soif ||w, — WOH2 < E m, approximation is “good enough”

o |lW, — WOH2 is bounded as m — o0, if kernel is always full-rank

15

Linearization quality

» For a two-layer net with -smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany [|x|| < 1, |f(x; w) — F"(x; w)| < W — wl|*

2\/m

» This holds for any w and w,, but only for this shallow case

. Soif ||w, — WOH2 < E m, approximation is “good enough”
o |lW, — WOH2 is bounded as m — o0, if kernel is always full-rank
. W, = Wl = ||-D(@D)1 - e‘%tKO}?(fO —y)|l where @ stacks ¢)(x))
T~ — _
< |o@D)T, 1A =e ¥)|, Ify =yl

< —-1-|If, — V|| for large ¢
o (D) 1Ty — ¥l g

15

Full training with any architecture

e |t's generally true (with a much more complicated proof) that
e for essentially any neural network architecture (CNNs, RNNs, GNNSs, ...)
e In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

o for small SGD step sizes 7, "
We

: "W
« then for any x and t, it holds that f,(x) converges almost surely to ftlm() c

Tensor Programs Ilb:
Architectural Universality of Neural Tangent Kernel Training Dynamics

Greg Yang!™ Etai Littwin "

16

https://arxiv.org/abs/2105.03703
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Recap of overall theory

* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:

FrCswy) = k() K™ (I B e_%tKO) ¥ =fo) #4609

17

Recap of overall theory

* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:
Fines wy) = g () Ky ™ (1= e7F99) (3 = £) + 00

e andsoast — 00, (S)GD on the network converges to kernel regression
f0) = k() K™ (y =) +fo(%) o) 00)

¢) - ~ o 'EU '
“G(.ﬁ 1'& L\io—[\f_, (Y e\f)’;;_\’ed ,7/ Kﬂ L/‘-D'OCYJI z) K—o(‘?ﬁp/)('“'S

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Recap of overall theory

* With essentially any architecture, using square loss, scalar outputs:
 In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

e and during training, f(x; w,) stays close to the linearized training result:
Fines wy) = g () Ky ™ (1= e7F99) (3 = £) + 00
e andsoast — 00, (S)GD on the network converges to kernel regression

F00) = k) K™ (v = £y) + £,
 predictions on training set: KOKO_I(y —)+t =y—f,+1f,=y

17

Vector outputs

« Network can have O > 1 outputs

o () =V fOs Wl € RP, T ky(X), X)) = hy(X))hy (X)) € RYXC

. Usually write K, € RNONO ' (x) € RPXM0 y € RVO

nt

Then fin(; w) = k() K, ™! (1 _ e_WKO) (y = £,) +£,() € RO

18

Other loss functions

* (Can use other losses than square loss; get same kind of ODE

N
d .. 7 A
— [w) = = k()| Vi L@ v)|
dt N §7=f(Xl-,Wt) i=1
 Doesn’t necessarily have a closed form anymore
 Square loss isn’t such a bad loss, even for classification!

 Hui and Belkin (2020)

19

https://arxiv.org/abs/2006.07322

Kernel regression

ﬁ%ﬁ%f{x

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel methods

Kernel models are linear models in feature space
‘W oKW
A usual real-valued linear model is f(X; W) = (X, w) =7

Kernel models are f(x; w) = (¢(X), w) for some fixed feature map ¢(x)

» For example, polynomial features like @(X) = (l,x, xz)
D

e Can in general map to , hot just |
 More on this later!

The kernel function is k(X, X') = (d(Xx), ¢(Xx'))

* Not the same as kernel density estimation, convolutional kernels,
kernel of a linear map (null space), the Linux kernel, ...

The space of functions f(X; W) = (¢(X), w) for all possible w
IS known as a reproducing kernel Hilbert space (RKHS)

21

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel regression

N
For a fixed ¢, minimize Ly(w) = % Z (P(x), W)-y)2
i=1

» If D > N, there are typically infinitely many w with L¢(w) = 0
« One strategy: start at some w, and do gradient descent until you hit one
2
o 1T <

gradient descent converges to (proof via SVD)

Gmax X)2 |
w = argmin||lw — wy|| = ®'K~ly + (I - ®'K~'d)w, -
w:Ow=y . x) ce('x)T g@

. Predictions are {(p(x), W) = k(x) K~y + fo(x) — &

K_lfo c [CZCK)'T@(F')
. i.e. exactly f() = k(x) K™ (y — f()) + fo(x) from before

@Cx}“ ‘)
- 5 ()

22

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression

» The more common way to choose a solution is ridge regression: for 4 > 0,

, 1§
W, = algli N Z (W, p())=v)” + Allw — wl°

w i=1

=w,+ D' (K + N (y—D "'wp)
(Wi (1)) = fo(0) + k() (K 4+ NAD ™ (y — £)

23

Kernel ridge regression

e The more common way to choose a solution is ridge regression: for 4 > 0,

W, = al‘gmm— ((W, (x)) =) + Allw — W[
W =1

=w,+ ® (K + NAD (y—D "w,)
(Wi, () = fo(0) + k() (K + NAD ™ (y —)
 An equivalent view, kernel ridge regression:
e« The RKHS 7 is a Hllbert space and so has a norm ||f]| &

fi= argmm— Z (fe)=y)2 + Af = foll%

fex
+ RKHS norm for f(+) = (w, p) is [1fll5 = 1wl

23

Kernel ridge regression

e The more common way to choose a solution is ridge regression: for A > 0,

W, = argmm—Z«w H(x))—y) + Allw — w1

W =1
=wy+ ©®' (K + NAD) ' (y—D"'w,)
(Wi, () = fo(0) + k() (K + NAD ™ (y —)
 An equivalent view, kernel ridge regression:
e« The RKHS 7 is a Hllbert spaoe and so has a norm ||f]| &

)= argmm— Z (fe)=y)2 + Af = foll%

fex

+ RKHS nomm for f(1) = (w. ()} is [l = Il
» Note: equivalent to use wy = 0/ fy(x) = 0 but fit residuals y; — fo(X,)

23

Kernel “ridgeless” regression

. Running small-LR gradient descent from w, gives same predictions as limfll:

A A—0
10 = k() (K + NAD™!(y — £o) + fo(1)
F0) = k() K™ (y = 1) +£5()

24

Kernel “ridgeless” regression

. Running small-LR gradient descent from w, gives same predictions as limf/l:

A A—0
10 = k() (K + NAD™!(y — £o) + fo(1)
F0) = k() K™ (y = 1) +£5()

 \We know some stuff about kernel predictors,
e.g. what kinds of functions they can learn without overfitting

» (it’s the functions with small ||f — fy||)

24

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

e Aswidthm — 00, D — o0 as well

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters
e Aswidthm — 00, D — o0 as well

» But k, doesn’t change too much as m — 0!

25

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

e Aswidthm — 00, D — o0 as well
» But k, doesn’t change too much as m — 0!

e \We can still do stuff in infinite-dimensional RKHSes!

25

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters
e Aswidthm — 00, D — o0 as well

» But k, doesn’t change too much as m — 0!

e \We can still do stuff in infinite-dimensional RKHSes!
. Gaussian kernel k(X{,X,) = exp(—%”xl — X2H2) is also infinite-dim
O

25

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

e Aswidthm — 00, D — o0 as well
» But k, doesn’t change too much as m — 0!

e \We can still do stuff in infinite-dimensional RKHSes!
. Gaussian kernel k(X{,X,) = exp(—%”xl — X2H2) is also infinite-dim
O

. We just only use kernel form: f(x) = k(x) K~ (y — fo) + fo(%)

25

Infinite NTKs are infinite-dimensional

D

 The w for an empirical NTK is in R"™, with D the total number of parameters

e Aswidthm — 00, D — o0 as well
» But k, doesn’t change too much as m — 0!

* We can still do stuff in infinite-dimensional RKHSes!
. Gaussian kernel k(X{,X,) = exp(—%ﬂzﬂxl — X2H2) is also infinite-dim
. We just only use kernel form: f(x) = k(x) K~! (y — fo) + fo (%)

 Representer theorem implies that

N
f() — Jo(¥) = Za,-k(, X)) =Kk(x)-a forsomea € | N
i=1

25

Uses and limitations of infinite NTKs

Great method for small-data tasks

Classifier Friedman Rank | Average Accuracy P90 P95 PMA
NTK 28.34 81.95%+14.10% | 88.89% | 72.22% | 95.72% £5.17%
NN (He init) 40.97 80.88%114.96% 81.11% | 65.56% 94.34% +7.22%
NN (NTK init) 38.06 81.02%+14.47% 85.56% | 60.00% 94.55% +5.89%
RF 33.51 81.56% +13.90% | 85.56% | 67.78% 95.25% +5.30%
Gaussian Kernel 35.76 81.03% 4+ 15.09% | 85.56% | 72.22% | 94.56% +8.22%
Polynomial Kernel 38.44 78.21% £ 20.30% | 80.00% | 62.22% | 91.29% £18.05%

Table 1: Comparisons of different classifiers on 90 UCI datasets. P90/P95: the number of datasets a classifier
achieves 90%/95% or more of the maximum accuracy, divided by the total number of datasets. PMA: average
percentage of the maximum accuracy.

27

https://arxiv.org/abs/1910.01663

Good for distinguishing distributions

CIFAR ME SCF C2ST-S C2ST-L M-O M-D SRF SCNTK
2000 | 0.588 0.171 0.452 0.529 0.316 0.744 0.440 0.805
o N e e Kok e 7 AR Rt S0 O
pared for the outlier detectic;n task with CIFAR10 and SVHN i -- WQIE &q- 129, ’E.
datasets. With a ﬁx.ed kernel, SCNTK shows a promising results g -E-. , &m?" . FH
for OOD d both : s % e
"l Outier | Gawssin vk sovik ¢ RGN S e LR G
CIFAR10 SVHN 0.82 0.71 0.85
SVHN CIFARIO | 0.20 0.51 0.80 - VIEIEEIR) 2t e CREE 2 o
kR 603) EE o ol E@I 35 4
X s B r
25 Zo
3
Sl 7 /08 llﬂﬂ‘ﬂ 2. .ﬁ.! ﬂl
Rl o372 oAl Ts o

Figure 1: The images generated by different methods on MNIST, CIFAR-10, and CelebA datasets
given only 256 training images.
20

Useful signal for tr

0.96
0.84
0.72
0.60
0.48
0.36
0.24

681
4%

Can't
Generalize

0.12

0.45
0.41
0.36
0.31
0.27
0.23
0.18
0.14
0.09

12§,

(12 + logd)é&,
(10 + logd)é& «
10¢ -

ainability of architectures

61
4%

Can't
Generalize

128,

(12 + logd)&,
(10 + logd)é& «
10€ -

0.33
0.30
0.27
0.24
0.21
0.18
0.15
0.12
0.09

0.41
0.36
0.31
0.27
0.23
0.18
0.14
0.09

1.0

-©)

O O
o (o

Accuracy
O
SN

-—
e - —-_——--"

__——

- — s -
o

o —————— —

—— Training

—
-~
- -~ o~

--=- Test, 1 <1
wm= = Test, y1=1
-=-= Test, y1>1

12§,
(12 + logd)é&,
(10 + logd)é «

10!

-0.12
-0.09
-0.06

0.03
0.00
-0.03
-0.06
-0.09
-0.12

Figure 2. Trainability and generalization are captured by k") and P(@(l)). (a,b) The training and test accuracy of CNN-F trained
with SGD. The network is untrainable above the green line because kY is too large and 1s ungeneralizable above the orange line because
P(@(l)) 1s too small. (c) The accuracy vs learning rate for FCNs trained with SGD sweeping over the weight variance. (d,e) The test
accuracy of CNN-P and CNN-F using kernel regression. (f) The di‘fg@rence in accuracy between CNN-P and CNN-F networks.

Drawback: computation

» For a scalar problem, the kernel matrix K is N X N

. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK

« With “normal” deep learning, everything is O(/N)

30

Drawback: computation

» For a scalar problem, the kernel matrix K is N X N

. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK
« With “normal” deep learning, everything is O(/N)
 One possible help: “sketching” approximations

o k(%) = w(x,) - w(x,) with y(x) € RP

30

Drawback: computation

» For a scalar problem, the kernel matrix K is N X N
. Solving kernel regression exactly takes O(N?) memory, ~O(N?) time

« Computing K is really slow / lots of memory for big architectures
 Empirical NTK generally much faster, lower-memory than infinite NTK
« With “normal” deep learning, everything is O(/N)
 One possible help: “sketching” approximations

/\
n * . .
® k() S W() o W() W I -t h w() E L p (*) means that the result is copied from Arora et al. [5].
2 CNTKSKETCH (ours) GRADRF Exact CNTK CNN

Feature dimension 4,096 8,192 16,384 9,328 17,040 42,816

Test accuracy (%) 67.58 7046 72.06 6249 62.57 65.21 70.47* 63.81%
Time (s) 780 1,870 5,160 300 360 580 > 1,000,000

Table 2: MSE and runtime on large-scale UCI datasets. We measure the entire time to solve kernel
ridge regression. (—) means Out-of-Memory error.

MillionSongs WorkLoads CT Protein
of data points (n) 467,315 179,585 53,500 39,617
MSE Time (s) MSE Time (s) MSE Time(s) MSE Time (s)

RBF Kernel — — - - 3537 59.23 18.96 46.45
RFF 109.50 231 4.034 x 104 53.0 48.20 15.2 19.72 12.1

NTK - - - - 3052 72.10 2024 76.93
NTKREF (ours) 94.27 95 3.554 x 10% 35.7 46.91 2.12 20.51 4.3

NTKSKETCH (ours) 92.83 36 3.538 x 10% 27.5 46.52 18.8 21.19 14.91

30

S0, Is deep learning just kernels?

S0, Is deep learning just kernels?

e No.

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in the “NTK regime”

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in the “NTK regime”

 Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+ %

31

S0, Is deep learning just kernels?

e No.

* Real neural net optimization isn’t in the “NTK regime”

 Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+ %
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

31

A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||w*|| = d°, |b*| < 6d* + 1

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

32

A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||[w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

32

A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples
e Kernel-based methods require at least one of

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

32

A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||[w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples

e Kernel-based methods require at least one of
e exponentially many samples

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

32

A problem NTKs can’t learn

e Let’s try to learn a single ReLU unit, f*(x) = ReLU(w*, x) + b*)
. Some choice with ||[w*|| = d°, |b*| < 6d* + 1
 Gradient descent can learn this with polynomially many samples

e Kernel-based methods require at least one of
e exponentially many samples

e exponentially large RKHS norm (i.e. hard to learn)

On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

32

Quantifying the Benefit of
Using Differentiable Learning over Tangent Kernels

Eran Malach Hebrew University of Jerusalem eran.malach@mail.huji.ac.il
Pritish Kamath Toyota Technological Institute at Chicago pritish@ttic.edu
Emmanuel Abbe EPFL emmanuel .abbe@epfl.ch
Nathan Srebro Toyota Technological Institute at Chicago nati@ttic.edu

Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)

NTK at same NTK at alternate NTK of arbitrary model
Initialization randomized Initialization | or even an arbitrary Kernel

GD with unbiased | > NTK edge > poly™

initialization (Thm. 1) » Edge with any kernel can be < poly "
(V2 fo,(z) = 0) » NTK edge can be < poly while GD reaches 0 loss

ensures small error while GD reaches 0 loss (Separation 2)
(Separation 1)

Kernel (or » NTK edge > poly !
alt init) (Thm. 2)

GD with | .ap depend » NTK edge can be < poly ™" while GD reaches 0 loss

Edge can be < poly ™

bitr :
arbiaaty | n input while GD reaches 0 loss (Separation 2)

grlll;ilres dist. Dy NTK edge can be = 0 (Separation 2)

small while GD reaches arb. low loss
error (Separation 3) edge with any kernel can be < exp™*

Dist-indep while GD reaches arb. low loss
kernels (Separation 4)

Uses of empirical NTKs

One application: active learning
/train > Model f quml

Labeled set L Unlabeled set ‘U

—0

S~ -

label Oracle selected data

Making Look-Ahead Active Learning Strategies
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* Danica J. Sutherland
University of British Columbia University of British Columbia UBC & Amii
lemohama@cs.ubc.ca whbae@cs.ubc.ca dsuth@cs.ubc.ca

35

One application: active learning
/train > Model f query\v

Labeled set L Unlabeled set ‘U

—0

S~ -

label Oracle selected data

O class]l O class2 O unlabeled information

Making Look-Ahead Active Learning Strategies
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* Danica J. Sutherland
University of British Columbia University of British Columbia UBC & Amii
lemohama@cs.ubc.ca whbae@cs.ubc.ca dsuth@cs.ubc.ca

35

One application: active learning
/train > Model f query\v

Labeled set L Unlabeled set ‘U

—0

S~ -

label Oracle - selected data

O class]l O class2 O unlabeled information

Making Look-Ahead Active Learning Strategies
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* Danica J. Sutherland Op IC

University of British Columbia ~ University of British Columbia UBC & Amii
lemohama@cs.ubc.ca whbae@cs.ubc.ca dsuth@cs.ubc.ca

35

One application: active learning

> Model
/train f qum
Labeled set L @ Unlabeled set U

label Oracle selected data

O class]l O class2 O unlabeled information

Making Look-Ahead Active Learning Strategies / /
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* M , Op lc M O del Chang e
Universi ritish Columbia University of British Columbia
ubc.ca whbae@cs.ubc.ca dsuth@cs .ubc .ca

35

One application: active learning

> Model
/train f quemV
Labeled set L @ Unlabeled set U

label Oracle selected data

O class]l O class2 O unlabeled information

Making Look-Ahead Active Learning Strategies / /
Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* Wonho Bae* Danica J. S M , Op lc M O del Chang e L 0 O k-Ah ea d
Uni I iti lumbia University of British Columbia U
whbae@cs.ubc.ca dsut

& Amii
emohama@cs.ubc.ca

35

Active learning: look-ahead criteria

» Given a model f(x; W) trained on §

» What our model would be if we retrainedon ST =S U {(x",y")}?
* Joo expensive to actually retrain

 We can take a Taylor expansion around current weights w
e Then ask questions aboutfli”(: W) to pick which point to query

_ e.g. measure Z A7 W) — fO w)||
cU

36

Active Iearnlng with empirical NTKs

Naive NTK w/o Block

96 1 - 3hr
— 94 -
X 0 >
o
8 - l7m1n E
< 901 |

88 1

- 2min
36 - :

01 23456789
Cycle

(a) Naive look-ahead acquisition versus NTK
approximation. Bars show runtime per cycle.

* Far faster + better performance than actually retraining with the new data

37

Active Iearnlng with empirical NTKs

Naive NTK w/o Block

96 1 - 3hr
— 941
X >
8 l7m1n E
< 901 '

88

- 2min
36 1 :

01 23456789
Cycle

(a) Naive look-ahead acquisition versus NTK
approximation. Bars show runtime per cycle.

* Far faster + better performance than actually retraining with the new data

 Much better “understanding” of retraining behaviour than infinite NTK or one
step of SGD

37

Acc (%)

Active Iearnlng with empirical NTKs

Naive NTK w/o Block —o— NN NTK —eo— NN 1-Step —e =~ GP

NN Inf NTK == NN (Random) =®-= GP (Random)
06 - 3hr 98
94 | 76
) - — g
’ min = 2 92 —~— ="
90 — ”~
o 8 90 | — ')'—- 3
] \ - ' —
86‘ | | | | | | | | | | | min 86_ / /"____0"
0]23é5]6789 84-4/"//
cle |
/ e e e e e e
(a) Naive look-ahead acquisition versus NTK o 1 2 3 4 5 6 7 s 9
approximation. Bars show runtime per cycle. Cycle

* Far faster + better performance than actually retraining with the new data

 Much better “understanding” of retraining behaviour than infinite NTK or one
step of SGD

37

Active learning with empirical NTKs

 Matches or beats other active learning methods

~—— NTK ~— BADGE -——— Margin —— NTK ~—— BADGE -——— Margin —— NTK — BADGE ~—— Margin
Random —— Entropy —— LL4AL Random —— Entropy Random — Entropy
2 .
3 7
7~ 1- ~~ 2-' P~
X X X
<0 / — | o L o 1
&) | &) O
<ﬁ 81 /88 90 91 91 /91 92 92 92 93(% < 0‘ <
< -1 - / < 55 65 71 75 78 80 82 83 84 85(% <
-1 0-
60 ¥ X)] 66 66 67(%)
— 9.
01 23456 7 89 01 23456 7 89 0 1 2 3 4 5 6 7
Cycle Cycle Cycle
(a) SVHN: 1-layer WideResNet (b) CIFAR10: 2-layer WideResNet (c) CIFAR100: ResNetl8

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy i1s shown in text.

33

Predictin

Pretrained ResNet-34 on CIFAR-100

1.0 - e O s A e i e £
po—0—-0--0_. _ PR S
e ~0= ,.-—-0’/‘. o /’.‘ ,o":'/
pr-=0 =0 —-9--g. . ”'./ /'.’ /.;'./
0.8 e “-0-—0"'.’.. ,o,. ,0'/ ’
P 7’
— b- _.__‘___._ —®-~ o ./'.' ../‘://‘
LL] g - B - - ’-~..~.._-.—’_.¢‘ .'//./
D 0.6 p-e-e—-a-ny. e
E T_".'._'af__:a-'-;- A’f~‘..__._'.,¢-‘./.l
~ p——o—o .__,_:.:;J’__-._‘.“-.
v
v
o 0.4 -
& N
-e- Predicted risk (GCV
0.2 - G iats (. k) 300 —— 10000
——— (Generalization ris
Empirical risk — 1000 —— 30000
P — 3000 — 50000
0'0 -hl...l.l..l.l.ll.l.l....l..l..l.llllil || || llllll] 1 | lllllll ||] lIlIll] | 1 IllIlll | LI

10° 101 102 10°

N-A

1072 107!

Figure 1. Predicted vs. actual generalization risk of a pretrained
ResNet-34 empirical NTK on CIFAR-100 over dataset sizes /N and
ridge regularizations A. Corresponding training risks are plotted in
the background. The fit achieving the lowest MSE has 19.9% test
error on CIFAR-100 (vs. 15.9% from finetuning the ResNet).

FashionMNIST / ResNet-18 init.

CIFAR-10 / ResNet-18 pretr.

eneralization

Flowers-102 / ResNet-50 pretr. Food-101 / ResNet-101 pretr.

1.25 4 N | N | N i --+- Predicted risk (GCV)
' 300 —— 10000 300 —— 10000 —— 300 —— 2040 —— Generalization risk
—— 1000 —— 30000 —— 1000 —— 30000 —— 1000 g
m 1.00q — 3000 —— 60000 N I 3000 — 50000) 1T P e SO =
= soeess® e s [S 2 S T Tt et =
= O 75 _ e po-2 _ -~ " 7 oY _| Pt a L. o—0-0.0% 0%
v’ . /o‘/. g .:.’ o o . ./.. /.’/O .’., o p-0-0-gvg ._:': o 6;9‘/'
oL o':’ o’..'jl' O Ay /4 * p-© ~0-0_0=® .,0" - 0~0re-y == N
S8 AN g —
* 0.50ueueerenn. R) D, o l el] 300 —— 10000
evvennn oeessogetss” p-o—o-o-o— 93 0= 22570 —— 1000 —— 30000
0.25 -s-‘."."éié’éé:;;;;—;;;—2356‘3' Lrgmamara=ene - - —— 3000 —— 75750
| I | I | I | | I I I
104 1071 102 10° 102 1071 10! 10° 1071 10t 10°
N-A N-A N-A N-A

Figure 4. Generalization risk vs. the GCV prediction, for various datasets and networks, across sample sizes /N and regularization levels \.

 Uses generalized cross-validation to
estimate how well a network will generalize
on a new dataset after you fine-tune it

More Than a Toy: Random Matrix Models Predict How
Real-World Neural Representations Generalize

Alexander Wei! Wei Hu'! Jacob Steinhardt '

39

Computing empirical NTKs

 If we have O outputs, K is NO X NO
« CIFAR-10: N = 60,000, O = 10: 2.8 terabytes in memory
e Imagenet: N ~ 1,200,000, O = 1000: 11,520,000 terabytes in memory

» For the infinite NTK, we can actually ignore the O part

« Has form K @ I because of the last layer — corresponds to doing an
iIndependent kernel regression for each component

 CIFAR-10 becomes 29 gigabytes, ImageNet 11.52 terabytes

» For empirical NTK, we can get rid of the O too!

40

Pseudo-NTK

] &] &
kyCiox) = | Vy—=) fCsw) | - | Vyo—= D f(:w)
VO j=i VO j=i
* The kernel, its largest eigenvalue, and kernel regression outputs
all converge to the full eNTK result at rate O(1/4/m) NTK NTK

- 50min
96 - .
- 38min
g @
\J - 26min E
O i
2 92 ,
90 - - 14min
88 - -
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel IR I I I I min
Cycle
Mohamad Amin Mohamadi! Wonho Bae'! Danica J. Sutherland ! Figure 12: Comparison of pNTK with eNTK on a look-

ahead active learning task. pNTK is much faster than
41 eNTK without losing performance.

Pseudo-NTK: kernel approximation

FCN ConvNet ResNetl8 WideResNet
.21 —— WD 256 —— WD 2048 0.951 0.7 .01

W —— WD 512 —— WD 4096

— | 0.90 -]

g 1.0 —— WD 1024 —— WD 8192 .G

4 0.85

- 0.81 0.5 —

w

p— 0.80 -

o 0.6 0.4

I 0.751

@ 0.4 0.3 —— WF 8

> 0.70- 09 —— WF 16
‘@ 2 o

= 0.2 0.G5 - L weas WF 32

- . l /,/\
—— WF 64 0.1 1
0.0 ; ; — : 0.60 ' ' . - ' . , : . ' : -
0 50 100 150 200 0 o0 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: Evaluating the relative difference of Frobenius norm of ©y(D, D) and ©4(D, D) ® I at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar |©¢|| 7 and
|©¢ ® Ip||F at initialization.

42

Pseudo-NTK: regressmn resu

0.8

N~ — WD 256
§ 0.7 —— WD 512
T . —— WD 1024
E-U.b — WD 2048
~ 0.5 — WD 4096
o —— WD 8192
= 0.4 -

[

= 0.3

| ,

— 0.2

x

£0.1-
=

0.0 ' ! !

0 50 100 150 200

Epoch

Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random CIFAR-
10 points and testing on |X'| = 500. For wider NN, the relative difference in f%"(X) and f""(X) decreases at initialization.

0.91

0.81

0.7

0.61

0.51

ConvNet

1.0 &

WF 4
—— WF 8
—— WF 16
—— WF 32
—— WF 64
50 100 150
Epoch

200

ResNetl18

1.0

0.8

0.6

0.4 1

0.2

0.01

0

100
Epoch

150

200

1.0
0.8 1
0.6
0.4 1
0.21

0.01 t ! !
0 50 100 150 200

WideResNet

Epoch

Surprisingly, the difference between these two continues to quickly vanish while training the network.

FCN

— WD 256
—— WD 512
31 —— WD 1024
— WD 2048
WD 4096
—— WD 8192

A Test Acc (%)

0 50 100 150 200
Epoch

Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of £ and f%" at initialization. Again, the

ConvNet

50

100
Epoch

150

200

ResNet18

100
Epoch

150

200

I
—_—
A

difference between these two continues to vanish throughout the training process using SGD.

43

S = NN Ws O N

WideResNet

0 50 100 150 200

Epoch

S

seudo-NTK on full CIFAR-10

FCN ConvNet ResNetl8 WideResNet

85 —

607 80 -

§ 801 —
2 55 751 701

0'5! ‘

—_ —

§ 70

< 507 | 60 1

o — 651

kS .

e 457 —— WD 256 —— WD 2048 60 1 a5 501
e — WD 512 —— WD 4096 —— WF4 —— WF16 — WF1 —— WF4 —— WF2 —— WF8

20 —— WD 1024 —— WD 8192 551 —— WF8 —— WF 32 40 - —— WF2 —— WF8§ —— WF4 —— WF 16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f“" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".

FCN ConvNet 50 ResNet18 WideResNet
607 80 - 80 —
_ 70 -
(=] ;
é 50 70 - 70
Z 60 ,
G 60 - 60 -
T =0
;5 40 50 50 50 -
< 301 40 40
¢ 301 - 301
= 201 —— WD 256 —— WD 2048
- —— WD512 —— WD 4096 20 — WF4 —— WF16 201 —— WF1 —— WF4 201 — WF2 —— WFS8
10 — WD 1024 — WD 8192 10+ - WF 8 — WF 32 10 — WF2 — WF 8 10 - WF 4 - WF 16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 10: Evaluating the test accuracy of model f throughout SGD training on the full CIFAR-10 dataset. In contrast
to £%", the test accuracy of f does not significantly improve with growing width.

44

Understanding learning dynamics

* Interesting insights, worth reading — but based on NTKs from 500 samples
only, since they didn’t have the pNTK!

* In particular, it seems empirical NTK does meaningfully change later in the
process than they were able to notice

Deep learning versus kernel learning: an empirical
study of loss landscape geometry and the time
evolution of the Neural Tangent Kernel

Stanislav Fort'* Gintare Karolina Dziugaite’* Mansheej Paul'
Sepideh Kharaghani> Daniel M. Roy>* Surya Ganguli'
I Stanford University 2Element AI 3University of Toronto “Vector Institute

45

Understanding learning dynamics

Origin Path
OHT Label

p* Label
Start

Early Stopped

'\

sk 2.2 &

¢

base_ diff =0.0245

Figure 3: Learning path of samples with di

base diff =0.1270

s

base diff =0.6101 base diff =0.9425

‘erent base difficulty. Corners correspond to one-hot

vectors. Colors represent training time: transparent at initialization, dark blue at the end of training.

® Origin Path Origin Path

Smoothed Path
Start
Early Stopped

Smoothed Path
Start
Early Stopped

plane ship

BETTER SUPERVISORY SIGNALS
BY OBSERVING LEARNING PATHS

Yi Ren
UBC
renyi.joshual@gmail.com

Danica J. Sutherland
UBC and Amii

dsuth@cs.ubc.ca

Shangmin Guo
University of Edinburgh
s.guol@ed.ac.uk

4"

o
® Origin Path ’ 1
Smoothed Path = ‘
Start o ® (%)
Early Stopped S
$e ¥
epoch 1 ——

plane

epoch 10:

epoch start
epoch end

Xo update start
Xo update end

—— Other Xu update

Q*.‘

epoch 90: <4-@=—e

Figure 4: Updates of q(x,) over training.

/

46

Understanding learning dynamics

Proposition 1. Let z'(x) = f(w?,x) denote the network output logits with parameters W', and
q’(x) = Softmax(z'(x)) the probabilities Let witl = wt — 0V, (P, (%) "L(Q(xy))) be the

result of applying one step of SGD to w' using the data point (xu, P,..(X.)) with learning rate 7.
Then the change in network predictions for a particular sample x,, is

q"" (%) =" (%) = n A (x0) K (%0, %u) (Prar(%u) — " (xu)) + O [Vwz(xu)l5p),
where At(x,) = V,qt(x,) and Kt (x,, %) = (Vwz(%,)|lwt) (Vwz(Xe)|wt) ' are K x K matrices.

e epoch start
S
+ epoch end
e Xo update start
- $,0 ~ Xo update end
epoch 1: -H-—o —— Other Xu update

L
epoch 3 "LF\,
~ epoch 10: %""

epoch 90: <4-@e—e

Figure 4. Updates of q(x,) over training.
47

Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:

flin(;Wt) — k()()K()_l (I — e_nWtKo) (y — fO) +f0()

48

Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
. _1 _ﬂ_f
1w = k(O K™ (T= e7F59) (3 = 1) + 509

e andsoasf — o0, (S)GD on the network converges to kernel regression

F00) =k, () K, (y = 1) + ()

48

Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
: —1 _nt
Fines wy) = k() K™ (1= e7F9) (v = £) + £
e andsoasf — o0, (S)GD on the network converges to kernel regression

F0) = k() K™ (y =) + fo(0)
e predictions on training set: KOKO_I(y — fO)+ 0— Y — fo TIhp =Y

48

Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
: —1 _nt
Fines wy) = k() K™ (1= e7F9) (v = £) + £
e andsoasf — o0, (S)GD on the network converges to kernel regression

F00) =k, () K, (y = 1) + ()

+ predictions on training set: K K, '(y = f)+f, =y —f,+f, =y
* This can’t explain all of real deep learning

48

Recap

» With essentially any architecture, using square loss, scalar outputs:
* In the limit as the network becomes wider,

o for appropriate Gaussian-distributed w,

+ the NTK at initialization, ky, , converges to its mean Eky,

» and during training, f(x; W,) stays close to the linearized training result:
1w = k(O K™ (T= e7F59) (3 = 1) + 509
e andsoasf — o0, (S)GD on the network converges to kernel regression
F) = k() K™ (v = £p) + £
+ predictions on training set: K K, '(y = f)+f, =y —f,+f, =y

* This can’t explain all of real deep learning
 But it’s a useful tool, especially local approximations with empirical NTK

48

