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• We use gradient descent (or similar) to try to find the best network

2

What happens when training a neural net?

• Loss landscape might be complicated (is non-convex)

• Where do we actually end up?

• Neural tangent kernel theory lets us approximate this process
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Does training neural nets work?
• Gradient descent will find a stationary point: one where gradient = 0
• Could be a global minimum, a local minimum, or a saddle point

• Bad local minima do exist
• But does SGD find them?  

• Several papers around 2018-19 showed:
• If the network is very overparameterized (width , possibly )≫ N → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the 

neural tangent kernel
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2 ∥ŷ − y∥2

• Training loss LS(w) =
N

∑
i=1

ℓ( f(xi; w), yi)

4ImageNet: n11939491_daisy.JPEG

https://github.com/EliSchwartz/imagenet-sample-images/blob/master/n11939491_daisy.JPEG
Mobile User

Mobile User

Mobile User

Mobile User



Problem setting
• Notation for this talk:  is a function with parameters  evaluated at f(x; w) w x
•  is all of the parameters of a deep net, all stacked togetherw

•  is one particular input, e.g. x
•  is the output of the network, e.g. f(x; w) [0.0002,⋯,0.8735,⋯,0.0001]

• Have a labeled dataset S = {(xi, yi)}N
i=1

• Per-element loss function , , etcℓ(ŷ, y) = − log(ŷ ⋅ y) ℓ( ̂y, y) = 1
2 ∥ŷ − y∥2

• Training loss LS(w) =
N

∑
i=1

ℓ( f(xi; w), yi)

• Choose  to minimize  with (stochastic) gradient descentw LS
4ImageNet: n11939491_daisy.JPEG
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N

N

∑
i=1

⟨∇w f(x; w)
wt

, ∇w f(xi, w)
wt ⟩ (f(xi, wt)−yi)

One step of gradient descent in function space

• What does that do to ? 
f(x; wt)

f(x; wt+1) = f(x; wt) + [∇w f(x; w)
wt ](wt+1 − wt) + ,(∥wt+1 − wt∥2)
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kwt
≈ k0

f(x; wt+1) − f(x; wt) ≈ − η
N

N

∑
i=1
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• Let , 

, 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• This is the same formula as gradient flow for kernel regression – back to this soon!8
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• Start with depth 2, scalar output:    f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

•  is part of the vector of all parameters,  for wj ∈ ℝd w ∈ ℝD D = md
• The  are fixed signs in , for maximum simplicityaj {−1,1}

• Then 

9

= ⟨
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,
a1x2σ′ (w1 ⋅ x2)/ m
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⟩
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arccos kernel
For ,  for any , and , 
the NTK at initialization is  

             

∥x1∥ = 1 = ∥x2∥ w ∼ 4(0, νI) ν > 0 σ(z) = ReLU(z) = max(z,0)

(x1 ⋅ x2)2w[σ′ (w ⋅ x1) σ′ (w ⋅ x2)] = (x1 ⋅ x2)( 1
2 − 1

2π
arccos(x1 ⋅ x2))
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For ,  for any , and , 
the NTK at initialization is  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2 − 1
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This kernel has nice properties: it’s universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}



NTK at initialization
• It’s generally true (with a much more complicated proof) that
• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
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• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• it holds that the “empirical NTK”  converges almost surely to kw 2wkw
• Convergence might be slow, though!

• Can compute  with dynamic programming: github.com/google/neural-tangents2wkw
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How good is the approximation?

• Remember that we linearized  around :  

        


• Linear in  but usually not linear in !


• Let’s return to our simple  case


• How close is  to  for the  we see during training?

f w0

f lin(x; w) = f(x; w0) + [∇w f(x, w)
w0 ](w − w0) ≈ f(x; w)

w x
f(x; w) = 1

m

m

∑
j=1

aj σ(wj ⋅ x)

f lin f w

12
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Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights  with linear activation, 

then for any ,      

β
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second-layer weights  with linear activation, 

then for any ,      

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; w) − f lin(x; w)| ≤ β
2 m

∥w − w0∥2

• This holds for any  and , but only for this shallow casew w0

• So if , approximation is “good enough”∥wt − w0∥2 ≪ 2
β

m

•  is bounded as , if kernel is always full-rank∥wt − w0∥2 m → ∞
•     where  stacks  

                   

                    for large 

∥wt − w0∥ = ∥−Φ(ΦΦ⊤)−1(I − e− ηt
N K0)(f0 − y)∥ Φ ϕ(xi)

≤ ∥Φ(ΦΦ⊤)−1∥op ∥(I − e− ηt
N K0)∥op ∥f0 − y∥

≤ 1
σmin(Φ) ⋅ 1 ⋅ ∥f0 − y∥ t

15



Full training with any architecture
• It’s generally true (with a much more complicated proof) that

• for essentially any neural network architecture (CNNs, RNNs, GNNs, …)

• in the limit as the network becomes wider,

• for appropriate Gaussian-distributed ,

• for small SGD step sizes ,

• then for any  and t, it holds that  converges almost surely to 

w
η

x ft(x) f lin
t (x)

16
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Recap of overall theory
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training,  stays close to the linearized training result:  

       
f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
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Recap of overall theory
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training,  stays close to the linearized training result:  

       
f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
• and so as , (S)GD on the network converges to kernel regression 

       
t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set:  K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

17



Vector outputs

• Network can have  outputs 

• ,      

• Usually write , ,  
 
  Then      

•

O > 1

ϕw(x) = ∇w f(x; w)|w ∈ ℝO×D kw(x1, x2) = ϕw(x1)ϕw(x2)⊤ ∈ ℝO×O

K0 ∈ ℝNO×NO k0(x) ∈ ℝ1×NO y ∈ ℝNO

flin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x) ∈ ℝO

18



Other loss functions

• Can use other losses than square loss; get same kind of ODE  

                   


• Doesn’t necessarily have a closed form anymore

• Square loss isn’t such a bad loss, even for classification!

• Hui and Belkin (2020)

d
dt

f lin(x; wt) = − η
N

k0(x)[∇ŷLS(ŷ, yi) ŷ=f(xi,wt) ]
N

i=1

19

https://arxiv.org/abs/2006.07322


Kernel regression

20
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Kernel methods
• Kernel models are linear models in feature space

• A usual real-valued linear model is 

• Kernel models are  for some fixed feature map 

• For example, polynomial features like 

• Can in general map to any Hilbert space, not just 

• More on this later!


• The kernel function is 

• Not the same as kernel density estimation, convolutional kernels, 

kernel of a linear map (null space), the Linux kernel, …

• The space of functions  for all possible  

is known as a reproducing kernel Hilbert space (RKHS)

f(x; w) = ⟨x, w⟩
f(x; w) = ⟨ϕ(x), w⟩ ϕ(x)

ϕ(x) = (1, x, x2)
ℝD

k(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩

f(x; w) = ⟨ϕ(x), w⟩ w

21
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Kernel regression

• For a fixed , minimize 


• If , there are typically infinitely many  with 

• One strategy: start at some  and do gradient descent until you hit one


• If , gradient descent converges to (proof via SVD)  

      


• Predictions are  

• i.e. exactly      from before

ϕ LS(w) = 1
2N

N

∑
i=1

(⟨ϕ(xi), w⟩−y)2

D > N w LS(w) = 0
w0

η < 2
σmax(X)2

ŵ = argmin
w:Φw=y

∥w − w0∥ = Φ⊤K−1y + (I − Φ⊤K−1Φ)w0

⟨φ(x), ŵ⟩ = k(x) K−1y + f0(x) − KK−1f0
̂f(x) = k(x) K−1 (y − f0) + f0(x)

22
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Kernel ridge regression
• The more common way to choose a solution is ridge regression: for , 

                  

                       
     

λ > 0
ŵλ = argmin

w

1
N

N

∑
i=1

(⟨w, ϕ(xi)⟩−yi)2 + λ∥w − w0∥2

= w0 + Φ⊤(K + NλI)−1(y−Φ⊤w0)
⟨ŵλ, ϕ(x)⟩ = f0(x) + k(x) (K + NλI)−1(y − f0)
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• The RKHS  is a Hilbert space, and so has a norm  

                


• RKHS norm for  is 

ℋ ∥f∥ℋ

̂fλ = argmin
f∈ℋ

1
N

N

∑
i=1

( f(xi)−yi)2 + λ∥f − f0∥2
ℋ

f(x) = ⟨w, ϕ(x)⟩ ∥f∥ℋ = ∥w∥
• Note: equivalent to use  /  but fit residuals w0 = 0 f0(x) = 0 yi − f0(xi)
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Kernel “ridgeless” regression

• Running small-LR gradient descent from  gives same predictions as : 

                      
                              

w0 lim
λ→0

̂fλ

̂fλ(x) = k(x) (K + NλI)−1(y − f0) + f0(x)
̂f(x) = k(x) K−1 (y − f0) + f0(x)
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Kernel “ridgeless” regression

• Running small-LR gradient descent from  gives same predictions as : 

                      
                              

w0 lim
λ→0

̂fλ

̂fλ(x) = k(x) (K + NλI)−1(y − f0) + f0(x)
̂f(x) = k(x) K−1 (y − f0) + f0(x)

• We know some stuff about kernel predictors,  
e.g. what kinds of functions they can learn without overfitting

• (it’s the functions with small )∥f − f0∥ℋ
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Infinite NTKs are infinite-dimensional
• The  for an empirical NTK is in , with  the total number of parametersw ℝD D
• As width ,  as wellm → ∞ D → ∞
• But  doesn’t change too much as ! kw m → ∞

• We can still do stuff in infinite-dimensional RKHSes!
• Gaussian kernel  is also infinite-dimk(x1, x2) = exp(− 1

2σ2 ∥x1 − x2∥2)
• We just only use kernel form:  ̂f(x) = k(x) K−1 (y − f0) + f0(x)
• Representer theorem implies that 

           for some ̂f(x) − f0(x) =
N

∑
i=1

αik(x, xi) = k(x) ⋅ α α ∈ ℝN
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Uses and limitations of infinite NTKs
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Great method for small-data tasks

27arXiv:1910.01663

https://arxiv.org/abs/1910.01663


Good for distinguishing distributions

28https://proceedings.mlr.press/v139/jia21a.html; https://openreview.net/pdf?id=_d2f3hRn0hT



Useful signal for trainability of architectures

29http://proceedings.mlr.press/v119/xiao20b/xiao20b.pdf



Drawback: computation
• For a scalar problem, the kernel matrix  is 

• Solving kernel regression exactly takes  memory, ~  time

• Computing  is really slow / lots of memory for big architectures

• Empirical NTK generally much faster, lower-memory than infinite NTK


• With “normal” deep learning, everything is 

K N × N
,(N2) ,(N3)

K

,(N)

30https://arxiv.org/abs/2106.07880
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So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in the “NTK regime”
• Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+%

• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…

31



A problem NTKs can’t learn
• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
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• Let’s try to learn a single ReLU unit, f*(x) = ReLU(⟨w*, x⟩ + b*)
• Some choice with , ∥w*∥ = d3 |b*| ≤ 6d4 + 1
• Gradient descent can learn this with polynomially many samples
• Kernel-based methods require at least one of
• exponentially many samples
• exponentially large RKHS norm (i.e. hard to learn)

32
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Uses of empirical NTKs
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One application: active learning
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Active learning: look-ahead criteria

• Given a model  trained on 

• What our model would be if we retrained on ?

• Too expensive to actually retrain


• We can take a Taylor expansion around current weights 

• Then ask questions about  to pick which point to query


• e.g. measure  

f(x; w) S
S+ = S ∪ {(x+, y+)}

w
f lin(x; w+)

∑
x∈'

∥f lin(x; w+) − f(x; w)∥

36https://arxiv.org/abs/2206.12569



Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data

37https://arxiv.org/abs/2206.12569



Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data
• Much better “understanding” of retraining behaviour than infinite NTK or one 

step of SGD
37https://arxiv.org/abs/2206.12569



Active learning with empirical NTKs

• Far faster + better performance than actually retraining with the new data
• Much better “understanding” of retraining behaviour than infinite NTK or one 

step of SGD
37https://arxiv.org/abs/2206.12569



Active learning with empirical NTKs
• Matches or beats other active learning methods

38https://arxiv.org/abs/2206.12569



Predicting generalization

39https://arxiv.org/abs/2203.06176

• Uses generalized cross-validation to 
estimate how well a network will generalize 
on a new dataset after you fine-tune it



Computing empirical NTKs
• If we have  outputs,  is 

• CIFAR-10: , :  2.8 terabytes in memory

• Imagenet: , : 11,520,000 terabytes in memory  

• For the infinite NTK, we can actually ignore the  part

• Has form  because of the last layer – corresponds to doing an 

independent kernel regression for each component

• CIFAR-10 becomes 29 gigabytes, ImageNet 11.52 terabytes  

• For empirical NTK, we can get rid of the  too!

O K NO × NO
N = 60,000 O = 10
N ≈ 1,200,000 O = 1000

O
K ⊗ I

O

40



Pseudo-NTK

•



• The kernel, its largest eigenvalue, and kernel regression outputs  
all converge to the full eNTK result at rate 

k̃w(x1, x2) = ∇w
1
O

O

∑
j=1

fj(x1; w) ⋅ ∇w
1
O

O

∑
j=1

fj(x2; w)

.(1/ m)

41https://arxiv.org/abs/2206.12543



Pseudo-NTK: kernel approximation

42https://arxiv.org/abs/2206.12543



Pseudo-NTK: regression results

43https://arxiv.org/abs/2206.12543



Pseudo-NTK on full CIFAR-10

44https://arxiv.org/abs/2206.12543



Understanding learning dynamics

• Interesting insights, worth reading – but based on NTKs from 500 samples 
only, since they didn’t have the pNTK!


• In particular, it seems empirical NTK does meaningfully change later in the 
process than they were able to notice 

45https://arxiv.org/abs/2010.15110
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Recap
• With essentially any architecture, using square loss, scalar outputs:
• in the limit as the network becomes wider,
• for appropriate Gaussian-distributed ,w
• the NTK at initialization, , converges to its mean ,kw0

Ewkw
• and during training,  stays close to the linearized training result:  

       
f(x; wt)

f lin(x; wt) = k0(x) K0
−1 (I − e− ηt

N K0) (y − f0) + f0(x)
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t → ∞

̂f(x) = k0(x) K0
−1 (y − f0) + f0(x)

• predictions on training set:  K0K0
−1(y − f0)+f0 = y − f0 + f0 = y

• This can’t explain all of real deep learning
• But it’s a useful tool, especially local approximations with empirical NTK
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