Neural Tangent Kernels, **Finite and Infinite**

ISI Winter School on Deep Learning

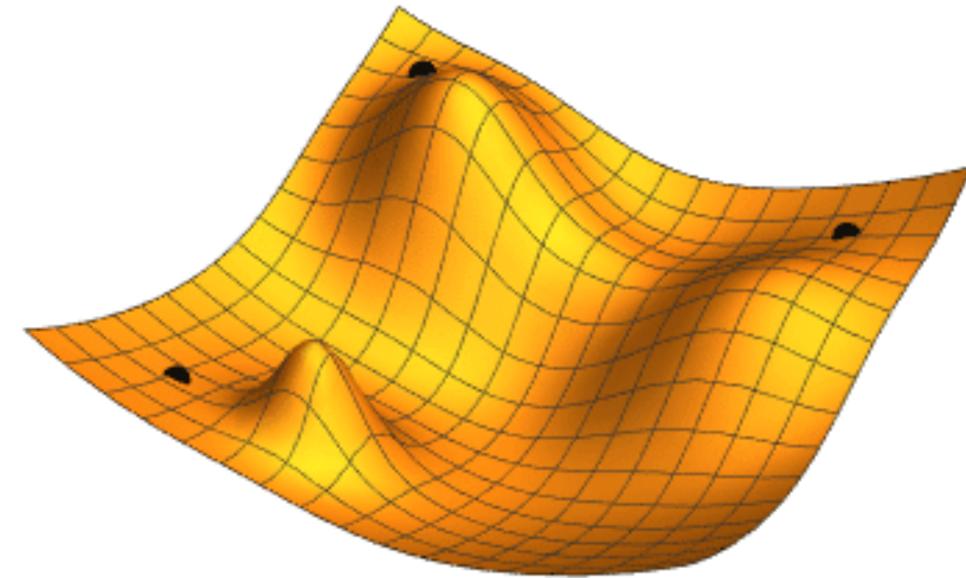
February 2023

Danica Sutherland

cs.ubc.ca/~dsuth/; these slides are under "talks" section

What happens when training a neural net?

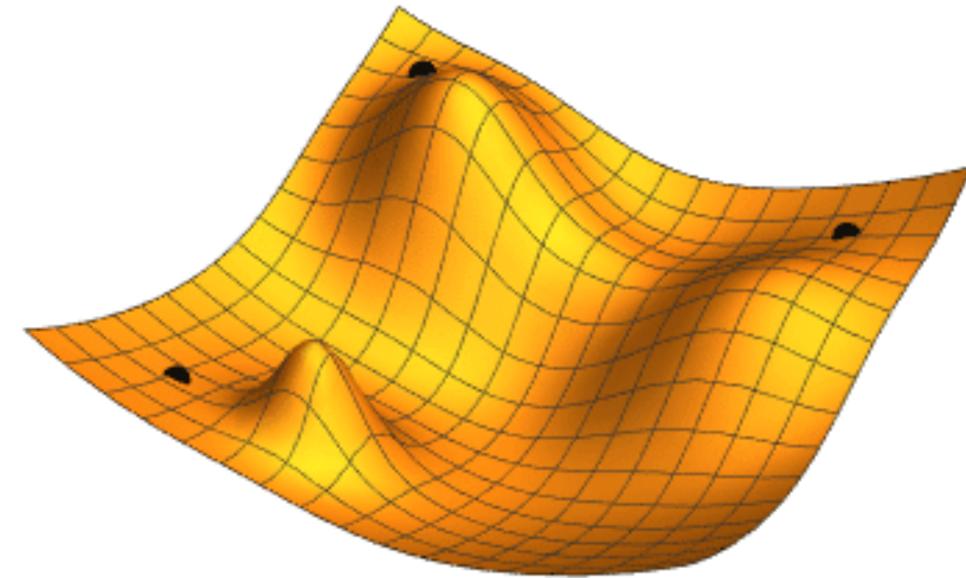
• We use gradient descent (or similar) to try to find the best network



Wikimedia Gradient_descent.gif; Li et al. (NeurIPS-2020) Fig 1a

What happens when training a neural net?

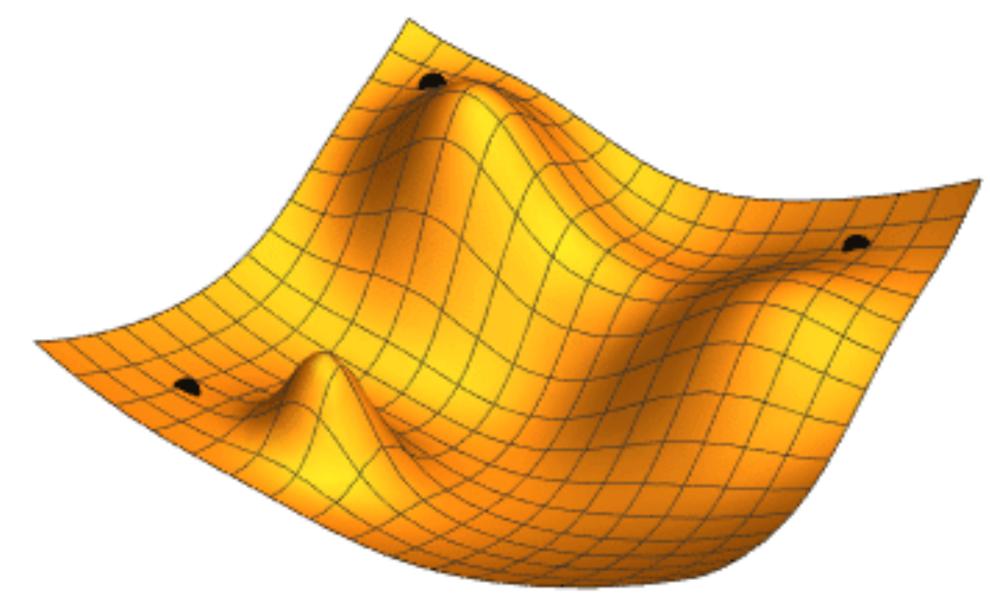
• We use gradient descent (or similar) to try to find the best network



Wikimedia Gradient_descent.gif; Li et al. (NeurIPS-2020) Fig 1a

What happens when training a neural net?

• We use gradient descent (or similar) to try to find the best network



- Loss landscape might be **complicated** (is non-convex) lacksquare
- Where do we actually end up?
- Neural tangent kernel theory lets us approximate this process \bullet

arXiv:1911.01413

Gradient descent will find a stationary point: one where gradient = 0

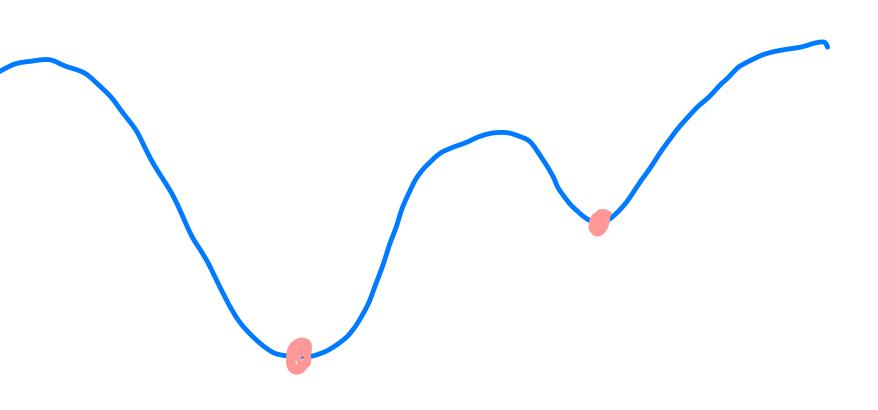
- - Could be a global minimum, a local minimum, or a saddle point

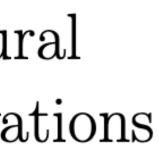
Gradient descent will find a stationary point: one where gradient = 0

- - Could be a global minimum, a local minimum, or a saddle point
- Bad local minima do exist

 Gradient descent will find a stationary point: one where gradient = 0 Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations

> Dawei Li[†] Ruoyu Sun[‡] Tian Ding*





- - Could be a global minimum, a local minimum, or a saddle point
- Bad local minima do exist
- But does SGD find them?

 Gradient descent will find a stationary point: one where gradient = 0 Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations

> Dawei Li[†] Ruoyu Sun[‡] Tian Ding*

- Bad local minima do exist
- But does SGD find them?
- Several papers around 2018-19 showed:

 - and we use an appropriate random initialization
 - with square loss
 - then (S)GD finds a global minimum

 Gradient descent will find a stationary point: one where gradient = 0 Could be a global minimum, a local minimum, or a saddle point

Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations

Dawei Li[†] Ruoyu Sun[‡] Tian Ding^{*}

• If the network is very overparameterized (width $\gg N$, possibly $\rightarrow \infty$)

- Bad local minima do exist
- But does SGD find them?
- Several papers around 2018-19 showed:

 - and we use an appropriate random initialization
 - with square loss
 - then (S)GD finds a global minimum
- Implicit in these papers:
 - neural tangent kernel

arXiv:1911.01413

 Gradient descent will find a stationary point: one where gradient = 0 Could be a global minimum, a local minimum, or a saddle point

Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations

Dawei Li[†] Ruoyu Sun[‡] Tian Ding^{*}

• If the network is very overparameterized (width $\gg N$, possibly $\rightarrow \infty$)

Behaviour of deep nets converges to kernel ridge regression with the

ImageNet: n11939491_daisy.JPEG

• Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x

- - w is all of the parameters of a deep net, all stacked together

ImageNet: n11939491_daisy.JPEG

• Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x
 - w is all of the parameters of a deep net, all stacked together

• **x** is one particular input, e.g.

ImageNet: n11939491_daisy.JPEG

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x
 - w is all of the parameters of a deep net, all stacked together

- **X** is one particular input, e.g.
- $f(\mathbf{x}; \mathbf{w})$ is the output of the network, e.g. $[0.0002, \dots, 0.8735, \dots, 0.0001]$

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x
- w is all of the parameters of a deep net, all stacked together

- **x** is one particular input, e.g.
- Have a labeled dataset $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$

• $f(\mathbf{x}; \mathbf{w})$ is the output of the network, e.g. [0.0002, ..., 0.8735, ..., 0.0001]

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x • w is all of the parameters of a deep net, all stacked together

- **x** is one particular input, e.g.

• $f(\mathbf{x}; \mathbf{w})$ is the output of the network, e.g. [0.0002, ..., 0.8735, ..., 0.0001] • Have a labeled dataset $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ • Per-element loss function $\ell(\hat{\mathbf{y}}, \mathbf{y}) = -\log(\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}), \ell(\hat{y}, y) = \frac{1}{2} ||\hat{\mathbf{y}} - \mathbf{y}||^2$, etc

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x • w is all of the parameters of a deep net, all stacked together

- **x** is one particular input, e.g.
- Have a labeled dataset $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
- Training loss $L_S(\mathbf{w}) = \int \mathcal{E}(f(\mathbf{x}_i; \mathbf{w}), \mathbf{y}_i)$

i=1

• $f(\mathbf{x}; \mathbf{w})$ is the output of the network, e.g. [0.0002, ..., 0.8735, ..., 0.0001] • Per-element loss function $\ell(\hat{\mathbf{y}}, \mathbf{y}) = -\log(\hat{\mathbf{y}} \cdot \mathbf{y}), \ \ell(\hat{y}, y) = \frac{1}{2} ||\hat{\mathbf{y}} - \mathbf{y}||^2$, etc

- Notation for this talk: $f(x; \mathbf{w})$ is a function with parameters \mathbf{w} evaluated at x • w is all of the parameters of a deep net, all stacked together

- **x** is one particular input, e.g.
- $f(\mathbf{x}; \mathbf{w})$ is the output of the network, e.g. [0.0002, ..., 0.8735, ..., 0.0001] • Have a labeled dataset $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ • Per-element loss function $\ell(\hat{\mathbf{y}}, \mathbf{y}) = -\log(\hat{\mathbf{y}} \cdot \mathbf{y}), \ \ell(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2} \|\hat{\mathbf{y}} - \mathbf{y}\|^2$, etc
- Training loss $L_S(\mathbf{w}) = \int \mathcal{E}(f(\mathbf{x}_i; \mathbf{w}), \mathbf{y}_i)$ i=1
- Choose w to minimize L_S with (stochastic) gradient descent

ImageNet: n11939491 daisy.JPEG

One step of gradient descent Full-batch gradient descent, square loss on scalars: $L_S(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2$

One step of gradient descent Full-batch gradient descent, square loss on scalars: $L_S(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\eta}{N} \sum_{i=1}^N \nabla_{\mathbf{w}} \mathcal{E}(f(\mathbf{x}_i; \mathbf{y}_i))$$

 $\mathbf{w}), y_i)$

• Full-ba

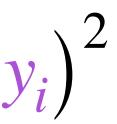
One step of gradient descent
batch gradient descent, square loss on scalars:
$$L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - \mathbf{y})$$

 $\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \mathcal{C}(f(\mathbf{x}_{i}; \mathbf{w}), y_{i}) \Big|_{\mathbf{w}_{t}}^{\mathsf{T}}$
 $= \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \left(\left[\nabla_{\hat{y}} \mathcal{C}(\hat{y}, y_{i}) \Big|_{\hat{y}=f(\mathbf{x}_{i}, \mathbf{w}_{i})} \right] \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right] \right)^{\mathsf{T}}$

• Ful

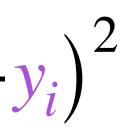
One step of gradient descent
Full-batch gradient descent, square loss on scalars:
$$L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - y)$$

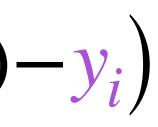
 $\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell(f(\mathbf{x}_{i}; \mathbf{w}), y_{i}) \Big|_{\mathbf{w}_{t}}^{\mathsf{T}}$
 $= \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \left(\left[\nabla_{\hat{y}} \ell(\hat{y}, y_{i}) \Big|_{\hat{y}=f(\mathbf{x}_{i}, \mathbf{w}_{t})} \right] \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right] \right)^{\mathsf{T}}$
 $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right]^{\mathsf{T}} (f(\mathbf{x}_{i}, \mathbf{w}_{t}) - y_{i})$



One step of gradient descent
Full-batch gradient descent, square loss on scalars:
$$L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - \mathbf{y})$$

 $\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} \ell(f(\mathbf{x}_{i}; \mathbf{w}), y_{i}) \Big|_{\mathbf{w}_{t}}^{\mathsf{T}}$
 $= \mathbf{w}_{t} - \frac{\eta}{N} \sum_{i=1}^{N} \left(\left[\nabla_{\hat{y}} \ell(\hat{y}, y_{i}) \Big|_{\hat{y}=f(\mathbf{x}_{i}, \mathbf{w}_{i})} \right] \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{i}) \Big|_{\mathbf{w}_{t}} \right] \right)^{\mathsf{T}}$
 $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{i}) \Big|_{\mathbf{w}_{t}} \right]^{\mathsf{T}} (f(\mathbf{x}_{i}, \mathbf{w}_{i}) - y_{i})$
 $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_{t}) \approx -\frac{\eta}{N} \sum_{i=1}^{N} \left\langle \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_{t}}, \nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right\rangle (f(\mathbf{x}_{i}, \mathbf{w}_{t}) + y_{i})$





One step of gradient descent in function space Full-batch gradient descent, square loss: $L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} \left(f(\mathbf{x}_{i}, \mathbf{w}) - y_{i} \right)^{2}$ $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right]^{\top} \left(f(\mathbf{x}_{i}, \mathbf{w}_{t}) - y_{i} \right)$

$$\mathbf{w}_{t+1} - \mathbf{w}_t = -\frac{\eta}{N} \sum_{i=1}^N \left[\nabla_{\mathbf{w}} f(\mathbf{x}_i, \mathbf{w}_i) \right]$$

• What does that do to $f(\mathbf{X}; \mathbf{W}_t)$?

$$\mathbf{w}_{t+1} - \mathbf{w}_t = -\frac{\eta}{N} \sum_{i=1}^N \left[\nabla_{\mathbf{w}} f(\mathbf{x}_i, \mathbf{w}_i) \right]$$

• What does that do to $f(\mathbf{X}; \mathbf{W}_t)$?

$$f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \sum_{i=1}^{N} \left\langle \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_t}, \nabla_{\mathbf{w}} f(\mathbf{x}_i, \mathbf{w}) \Big|_{\mathbf{w}_t} \right\rangle \left(f(\mathbf{x}_i, \mathbf{w}_t) \right)$$

One step of gradient descent in function space Full-batch gradient descent, square loss: $L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - y_{i})^{2}$ $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right]^{\top} (f(\mathbf{x}_{i}, \mathbf{w}_{t}) - y_{i})$

 $-y_i$

e step of gradient descent *in function spa*
ull-batch gradient descent, **square loss**:
$$L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - y_{i})^{2}$$

 $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{i}) \Big|_{\mathbf{w}_{t}} \right]^{T} (f(\mathbf{x}_{i}, \mathbf{w}_{i}) - y_{i})$
hat does that do to $f(\mathbf{x}; \mathbf{w}_{t})$?
 $\mathbf{x}; \mathbf{w}_{t+1}) = f(\mathbf{x}; \mathbf{w}_{t}) + \left[\nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_{t}} \right] (\mathbf{w}_{t+1} - \mathbf{w}_{t}) + \mathcal{O}(||\mathbf{w}_{t+1} - \mathbf{w}_{t}||^{2})$
 $\mathbf{v}_{t+1}) - f(\mathbf{x}; \mathbf{w}_{t}) \approx -\frac{\eta}{N} \sum_{i=1}^{N} \left\langle \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_{t}}, \nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}) \Big|_{\mathbf{w}_{t}} \right\rangle (f(\mathbf{x}_{i}, \mathbf{w}_{t})$

One step of gradient descent in function space.
Full-batch gradient descent, square loss:
$$L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}, \mathbf{w}) - y_{i})^{2}$$

 $\mathbf{w}_{t+1} - \mathbf{w}_{t} = -\frac{\eta}{N} \sum_{i=1}^{N} \left[\nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}_{t}) \Big|_{\mathbf{w}_{t}} \right]^{T} (f(\mathbf{x}_{i}, \mathbf{w}_{t}) - y_{i})$
• What does that do to $f(\mathbf{x}; \mathbf{w}_{t})$?
 $f(\mathbf{x}; \mathbf{w}_{t+1}) = f(\mathbf{x}; \mathbf{w}_{t}) + \left[\nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_{t}} \right] (\mathbf{w}_{t+1} - \mathbf{w}_{t}) + \mathcal{O}(||\mathbf{w}_{t+1} - \mathbf{w}_{t}||^{2})$
 $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_{t}) \approx -\frac{\eta}{N} \sum_{i=1}^{N} \left\langle \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_{t}}, \nabla_{\mathbf{w}} f(\mathbf{x}_{i}, \mathbf{w}) \Big|_{\mathbf{w}_{t}} \right\rangle (f(\mathbf{x}_{i}, \mathbf{w}_{t})$

 $-y_i$

• Defining a function $k_{\mathbf{w}}(\mathbf{x}, \mathbf{x}') = \langle \nabla f(\mathbf{x}; \mathbf{w}) |_{\mathbf{w}}, \nabla f(\mathbf{x}'; \mathbf{w}) |_{\mathbf{w}} \rangle$, we just showed $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \sum_{i=1}^N k_{\mathbf{w}_t}(\mathbf{x}, \mathbf{x}_i) (f(\mathbf{x}_i, \mathbf{w}_t) - y_i)$

 $f(x; w_0)$ i $f(x; w_{\tau})$

- "NTK regime" is when $k_{\mathbf{w}_{t}} \approx k_{0}$ throughout training. If so, we have $f(\mathbf{X}; \mathbf{W}_{t+1}) - f(\mathbf{X}; \mathbf{W}_t) \approx$

NTK regime • Defining a function $k_{\mathbf{w}}(\mathbf{x}, \mathbf{x}') = \left\langle \nabla f(\mathbf{x}; \mathbf{w}) |_{\mathbf{w}}, \nabla f(\mathbf{x}'; \mathbf{w}) |_{\mathbf{w}} \right\rangle$, we just showed $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \sum_{i=1}^N k_{\mathbf{w}_t}(\mathbf{x}, \mathbf{x}_i) \left(f(\mathbf{x}_i, \mathbf{w}_t) - y_i \right)$

$$-\frac{\eta}{N}\sum_{i=1}^{N}k_0(\mathbf{x},\mathbf{x}_i)(f(\mathbf{x}_i,\mathbf{w}_i)-y_i)$$

- "NTK regime" is when $k_{\mathbf{w}_{f}} \approx k_{0}$ throughout training. If so, we have

$$f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \sum_{i=1}^N k_0(\mathbf{x}, \mathbf{x}_i) \left(f(\mathbf{x}_i, \mathbf{w}_t) - y_i \right)$$

$$\left[k_0(\mathbf{x}, \mathbf{x}_1) \quad \cdots \quad k_0(\mathbf{x}, \mathbf{x}_N) \right] \in \mathbb{R}^{1 \times N},$$

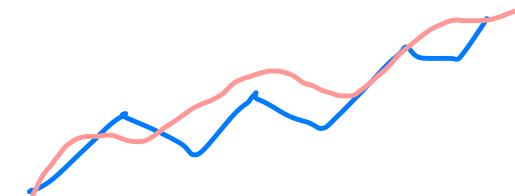
$$\mathbf{w}_t \quad \cdots \quad f(\mathbf{x}_N; \mathbf{w}_t) \right] \in \mathbb{R}^N,$$

$$\left[\mathbf{w}_t \right] \in \mathbb{R}^N.$$

• Let $k_0(x) =$ $\mathbf{f}_t = [f(\mathbf{x}_1; \mathbf{w}_1)]$ $\mathbf{v} = \begin{bmatrix} y_1 & \cdots \end{bmatrix}$ $\mathcal{Y}_{\mathcal{N}}$ $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$

NTK regime • Defining a function $k_{\mathbf{w}}(\mathbf{x}, \mathbf{x}') = \left\langle \nabla f(\mathbf{x}; \mathbf{w}) |_{\mathbf{w}}, \nabla f(\mathbf{x}'; \mathbf{w}) |_{\mathbf{w}} \right\rangle$, we just showed $f(\mathbf{x}; \mathbf{w}_{t+1}) - f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \sum_{i=1}^N k_{\mathbf{w}_t}(\mathbf{x}, \mathbf{x}_i) \left(f(\mathbf{x}_i, \mathbf{w}_t) - y_i \right)$

Linearized solution • If $k_{\mathbf{w}_t} \approx k_0$ throughout training, and we take a continuous limit instead of discrete steps (gradient flow), $\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$



Linearized solution • If $k_{\mathbf{W}_{t}} \approx k_0$ throughout training, and we take a continuous limit instead of discrete steps (gradient flow), $\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$

Let's define an explicit approximation: f^{lin}

$$V(\mathbf{X}; \mathbf{W}) = f(\mathbf{X}; \mathbf{W}_0) + \nabla_{\mathbf{W}} f(\mathbf{X}; \mathbf{W}) \Big|_{\mathbf{W}_0}$$

Linearized solution • If $k_{\mathbf{W}_{t}} \approx k_0$ throughout training, and we take a continuous limit instead of discrete steps (gradient flow), $\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$

- Let's define an explicit approximation: f^{lin}
- The differential equation $\frac{d}{dt} f^{lin}(\mathbf{x}; \mathbf{w}_t) =$ letting $(\mathbf{K}_0)_{ii} = k_0(\mathbf{x}_i, \mathbf{x}_i),$ $f^{lin}(\mathbf{X}; \mathbf{W}_{t}) =$

$$\mathbf{k}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_0}$$

- $\frac{\eta}{N} \mathbf{k}_0(\mathbf{x}) (\mathbf{f}_t^{lin} - \mathbf{y})$ has a closed-form solution
 $\mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$

Linearized solution • If $k_{\mathbf{w}_{t}} \approx k_0$ throughout training, and we take a continuous limit instead of discrete steps (gradient flow), $\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$

- Let's define an explicit approximation: f^{lin}
- The differential equation $\frac{d}{dt} f^{lin}(\mathbf{X}; \mathbf{w}_t) =$ letting $(\mathbf{K}_0)_{ii} = k_0(\mathbf{x}_i, \mathbf{x}_i),$ $f^{lin}(\mathbf{X}; \mathbf{W}_{t}) =$
 - As $t \to \infty$, if \mathbf{K}_0 is full-rank (usual case) $f^{lin}(\mathbf{X}; \mathbf{W}_t) \to \mathbf{k}_0(\mathbf{X}) \mathbf{K}_0^{-1} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{y}) \mathbf{K}_0^{-1} \mathbf{K}_0^$ NXN NXI IKN

$$\begin{aligned} \mathbf{h}(\mathbf{x}; \mathbf{w}) &= f(\mathbf{x}; \mathbf{w}_0) + \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) \Big|_{\mathbf{w}_0} \\ &- \frac{\eta}{N} \mathbf{k}_0(\mathbf{x}) (\mathbf{f}_t^{lin} - \mathbf{y}) \text{ has a closed-form solution} \\ &\mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x}) \\ &+ h_0(\mathbf{x}) \mathbf{k}_0^{-\frac{\eta t}{N} \mathbf{K}_0} \to \mathbf{0}, \end{aligned}$$

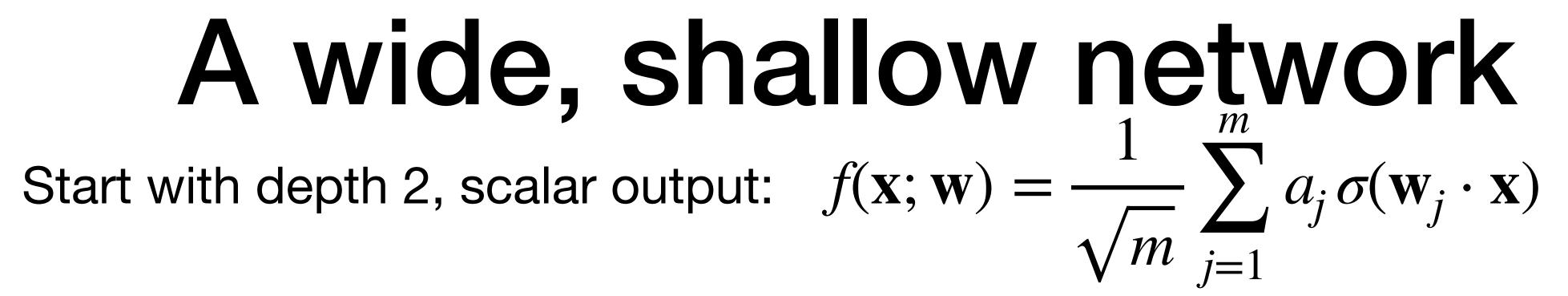
DN:

Linearized solution • If $k_{\mathbf{w}_{t}} \approx k_{0}$ throughout training, and we take a continuous limit instead of discrete steps (gradient flow), $\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x}; \mathbf{w}_t) \approx -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x})(\mathbf{f}_t - \mathbf{y})$

- Let's define an explicit approximation: f^{lin}
- The differential equation $\frac{d}{dt} f^{lin}(\mathbf{X}; \mathbf{w}_t) =$ letting $(\mathbf{K}_0)_{ii} = k_0(\mathbf{x}_i, \mathbf{x}_i),$ $f^{lin}(\mathbf{X}; \mathbf{W}_{t}) =$
 - As $t \to \infty$, if \mathbf{K}_0 is full-rank (usual case) $f^{lin}(\mathbf{X}; \mathbf{W}_t) \rightarrow \mathbf{k}_0(\mathbf{X}) \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x}) \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{y} - \mathbf{f}_$
- This is the same formula as gradient flow for⁸kernel regression back to this soon!

$$\begin{aligned} \mathbf{k}(\mathbf{x};\mathbf{w}) &= f(\mathbf{x};\mathbf{w}_0) + \nabla_{\mathbf{w}} f(\mathbf{x};\mathbf{w}) \Big|_{\mathbf{w}_0} \\ &- \frac{\eta}{N} \mathbf{k}_0(\mathbf{x}) (\mathbf{f}_t^{lin} - \mathbf{y}) \text{ has a closed-form solution} \\ &\mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x}) \\ &), e^{-\frac{\eta t}{N} \mathbf{K}_0} \to \mathbf{0}, \\ &(\mathbf{x}) \end{aligned}$$

DN:



• $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md

- $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md
- The a_i are fixed signs in $\{-1,1\}$, for maximum simplicity

- The a_i are fixed signs in $\{-1,1\}$, for maximum simplicity
- Then $k_{\mathbf{w}}(\mathbf{x}_1, \mathbf{x}_2) = \langle \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}), \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}) \rangle$

• $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md

- $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md
- The a_i are fixed signs in $\{-1,1\}$, for maximum simplicity
- Then $k_{\mathbf{w}}(\mathbf{x}_1, \mathbf{x}_2) = \left\langle \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}), \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}) \right\rangle$

 $= \left\langle \begin{bmatrix} a_1 \mathbf{x}_1 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_1) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_1 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_1) / \sqrt{m} \end{bmatrix} \right\rangle \begin{bmatrix} a_1 \mathbf{x}_2 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_2) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_2 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_2) / \sqrt{m} \end{bmatrix} \right\rangle$

- $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md
- The a_i are fixed signs in $\{-1,1\}$, for maximum simplicity
- Then $k_{\mathbf{w}}(\mathbf{x}_1, \mathbf{x}_2) = \langle \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}), \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}) \rangle$

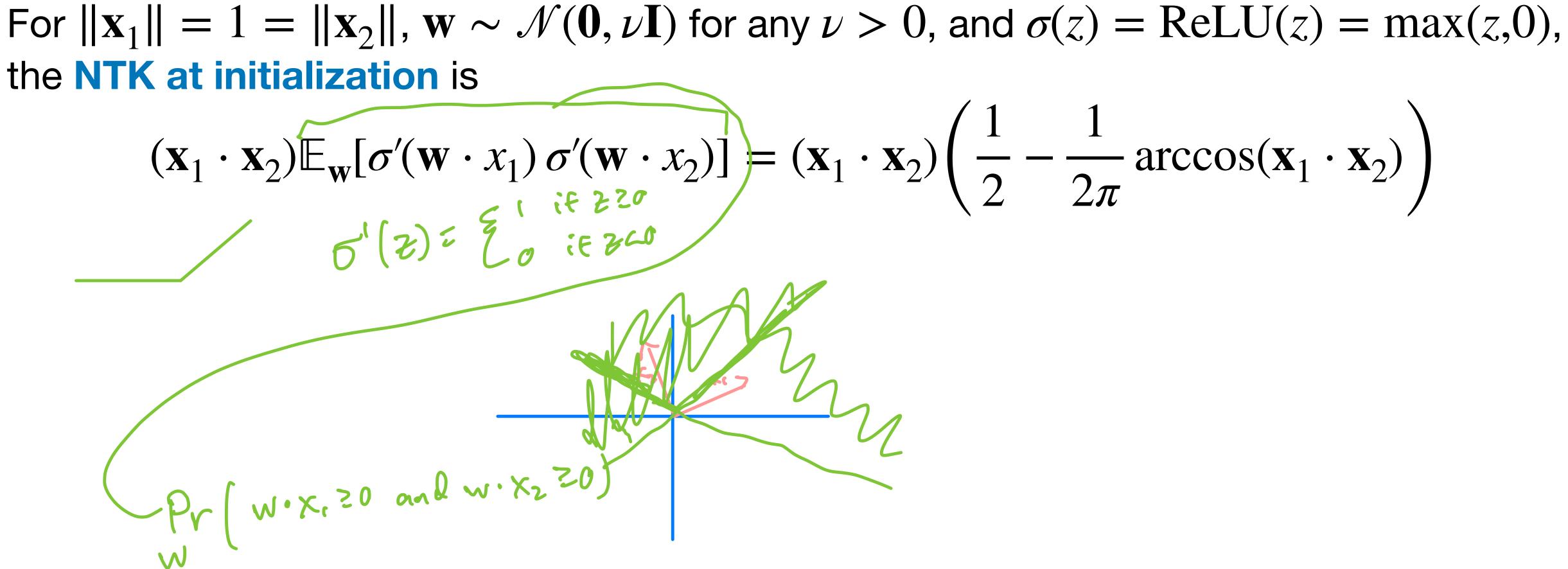
$$= \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \left[\frac{1}{m} \sum_{j=1}^m a_j^2 \sigma'(\mathbf{w}_j \cdot \mathbf{x}_1) \sigma'(\mathbf{w}_j \cdot \mathbf{x}_2) \right]$$

 $= \left\langle \begin{bmatrix} a_1 \mathbf{x}_1 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_1) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_1 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_1) / \sqrt{m} \end{bmatrix}, \begin{bmatrix} a_1 \mathbf{x}_2 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_2) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_2 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_2) / \sqrt{m} \end{bmatrix} \right\rangle$

- $\mathbf{w}_i \in \mathbb{R}^d$ is part of the vector of all parameters, $\mathbf{w} \in \mathbb{R}^D$ for D = md
- The a_i are fixed signs in $\{-1,1\}$, for maximum simplicity
- Then $k_{\mathbf{w}}(\mathbf{x}_1, \mathbf{x}_2) = \langle \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}), \nabla_{\mathbf{w}} f(\mathbf{x}_1; \mathbf{w}) \rangle$

 $= \left\langle \begin{bmatrix} a_1 \mathbf{x}_1 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_1) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_1 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_1) / \sqrt{m} \end{bmatrix}, \begin{bmatrix} a_1 \mathbf{x}_2 \sigma'(\mathbf{w}_1 \cdot \mathbf{x}_2) / \sqrt{m} \\ \vdots \\ a_m \mathbf{x}_2 \sigma'(\mathbf{w}_m \cdot \mathbf{x}_2) / \sqrt{m} \end{bmatrix} \right\rangle$ $= \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} \left[\frac{1}{m} \sum_{j=1}^{m} a_{j}^{2} \sigma'(\mathbf{w}_{j} \cdot \mathbf{x}_{1}) \sigma'(\mathbf{w}_{j} \cdot \mathbf{x}_{2}) \right]_{\mathfrak{g}} \xrightarrow{m \to \infty} x_{1}^{\mathsf{T}} x_{2}^{\mathsf{T}} \mathbb{E}_{\mathbf{w}} \left[\sigma'(\mathbf{w}^{\mathsf{T}} x_{j}) \, \sigma'(\mathbf{w}^{\mathsf{T}} x_{2}^{\mathsf{T}}) \right]_{\mathfrak{g}}$ if the \mathbf{w}_{j} are i.i.d. random

arccos kernel



$$= (\mathbf{x}_1 \cdot \mathbf{x}_2) \left(\frac{1}{2} - \frac{1}{2\pi} \arccos(\mathbf{x}_1 \cdot \mathbf{x}_2) \right)$$

arccos kernel

the NTK at initialization is

 $(\mathbf{X}_1 \cdot \mathbf{X}_2) \mathbb{E}_{\mathbf{w}}[\sigma'(\mathbf{w} \cdot x_1) \sigma'(\mathbf{w} \cdot x_2)] =$

For $\|\mathbf{x}_1\| = 1 = \|\mathbf{x}_2\|$, $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \nu \mathbf{I})$ for any $\nu > 0$, and $\sigma(z) = \text{ReLU}(z) = \max(z, 0)$,

$$= (\mathbf{x}_1 \cdot \mathbf{x}_2) \left(\frac{1}{2} - \frac{1}{2\pi} \arccos(\mathbf{x}_1 \cdot \mathbf{x}_2) \right)$$

This kernel has nice properties: it's universal on $\{x \in \mathbb{R}^{d+1} : ||x|| = 1, x_{d+1} = 1/\sqrt{2}\}$

- It's generally true (with a much more complicated proof) that
 - for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
 - in the limit as the network becomes wider,
 - for appropriate Gaussian-distributed **w**,

Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of **Any Architecture are Gaussian Processes**

- It's generally true (with a much more complicated proof) that
 - for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
 - in the limit as the network becomes wider,
 - for appropriate Gaussian-distributed **w**,
 - it holds that the "empirical NTK" k_w converges almost surely to $\mathbb{E}_w k_w$

Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of **Any Architecture are Gaussian Processes**

- It's generally true (with a much more complicated proof) that
 - for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
 - in the limit as the network becomes wider,
 - for appropriate Gaussian-distributed w,
 - it holds that the "empirical NTK" k_w converges almost surely to $\mathbb{E}_w k_w$ Convergence might be slow, though!

Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of **Any Architecture are Gaussian Processes**

- It's generally true (with a much more complicated proof) that
 - for essentially any neural network architecture (CNNs, RNNs, GNNs, ...)
 - in the limit as the network becomes wider,
 - for appropriate Gaussian-distributed w,
 - it holds that the "empirical NTK" k_w converges almost surely to $\mathbb{E}_w k_w$
 - Convergence might be slow, though!
- Can compute $\mathbb{E}_{w}k_{w}$ with dynamic programming: <u>github.com/google/neural-tangents</u>

Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of **Any Architecture are Gaussian Processes**

How good is the approximation?

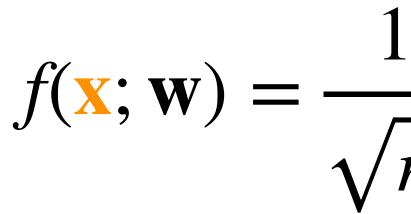
- Remember that we linearized f and f $f^{lin}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \left[\nabla_{\mathbf{w}}\right]$
 - Linear in w but usually **not** linear in x!

Let's return to our simple $f(\mathbf{X}; \mathbf{W})$

• How close is f^{lin} to f for the w we see during training?

round
$$\mathbf{w}_0$$
:
 $f(\mathbf{x}, \mathbf{w}) \Big|_{\mathbf{w}_0} \Big] (\mathbf{w} - \mathbf{w}_0) \approx f(\mathbf{x}; \mathbf{w})$

$$= \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \sigma(\mathbf{w}_j \cdot \mathbf{x}) \text{ case}$$



$f^{lin}(\mathbf{X}; \mathbf{W}) = f(\mathbf{X}; \mathbf{W}_0) + \langle \nabla f(\mathbf{X}; \mathbf{W}_0), \mathbf{W} - \mathbf{W}_0 \rangle$

 $f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \sigma(\mathbf{w}_j \cdot \mathbf{x})$

 $f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \sigma(\mathbf{w}_j \cdot \mathbf{x})$ $f^{lin}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \langle \nabla f(\mathbf{x}; \mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle$ $= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j}) \right]$

 $f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x})$ $f^{lin}(\mathbf{X}; \mathbf{W}) = f(\mathbf{X}; \mathbf{W}_0) + \langle \nabla f(\mathbf{X}; \mathbf{W}_0), \mathbf{W} - \mathbf{W}_0 \rangle$ $= \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j}) \right]$ $= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_{j} \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{j} \cdot \mathbf{x} \right)$

 $f(\mathbf{X}; \mathbf{W}) = \frac{1}{\sqrt{n}}$ $f^{lin}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \langle \nabla f(\mathbf{x}; \mathbf{w}_0), \mathbf{w} \rangle$ $= \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) + \right]$ $= \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \mathbf{w}_{0,j} \cdot \mathbf{x} \right] \right) - \mathbf{w}_{0,j} \cdot \mathbf{x} \right) - \mathbf{w}_{0,j} \cdot \mathbf{x} - \mathbf{w}_{0,j} \cdot \mathbf{w}_$

$$= \sum_{m=1}^{m} a_j \sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$= \mathbf{w}_0 \rangle$$
$$\sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j}) \Big]$$
$$= \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \Big] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x}$$

= 0 for ReLU: $\sigma(z) = z\sigma'(z)$

 $f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x})$ $f^{lin}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \langle \nabla f(\mathbf{x}; \mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle$ $= \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j}) \right]$ $= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1} \right) d_i \mathbf{x}$ = 0 for ReLU: $\sigma(z) = z\sigma'(z)$ $f_{W_0}(x; W) = \langle \nabla f(x; W_0), W \rangle$

$$-\sigma'(\mathbf{w}_{0,j}\cdot\mathbf{x})\mathbf{w}_{0,j}\cdot\mathbf{x}]+\sigma'(\mathbf{w}_{0,j}\cdot\mathbf{x})\mathbf{w}_{j}\cdot\mathbf{x}$$

 $f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \sigma(\mathbf{w}_j \cdot \mathbf{x})$ $f^{lin}(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \langle \nabla f(\mathbf{x}; \mathbf{w}_0), \mathbf{w} \rangle$ $= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) + \epsilon \right]$ $= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{i=1}^{m} a_i \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac$ = 0 for ReLU: $\sigma(z) = z\sigma'(z)$

We'll see shortly that $f - f^{lin}$ shrinks as *m* grows

$$-\mathbf{w}_{0}\rangle$$

$$\sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j}) \bigg]$$

$$-\sigma'(\mathbf{w}_{0,j}\cdot\mathbf{x})\mathbf{w}_{0,j}\cdot\mathbf{x}]+\sigma'(\mathbf{w}_{0,j}\cdot\mathbf{x})\mathbf{w}_{j}\cdot\mathbf{x}$$

- $f_{W_0}(x; W) = \langle \nabla f(x; W_0), W \rangle$

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}}$$

 $\sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}} \right]_{j=1}^{m} \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \frac{1}{\sqrt{m}$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$:

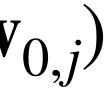
 $\sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \leq \beta$ for all z), $|a_j| \leq 1$, and $||x|| \leq 1$:

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{x}; \mathbf{w}) \right|$$

 $\sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j})$

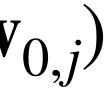


$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$: $|\sigma(r) - \sigma(s) - \sigma'(s)(r-s)| = \left| \int_r^s \sigma''(z)(s-z) dz \right|$

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{x}; \mathbf{w}) \right|$$

 $\sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j})$

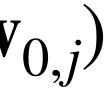


$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$: $|\sigma(r) - \sigma(s) - \sigma'(s)(r-s)| = \left| \int_r^s \sigma''(z)(s-z) dz \right| \le \frac{\beta}{2}(r-s)^2$

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{x}; \mathbf{w}) \right|$$

 $\sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j})$



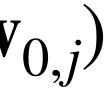
$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$: $|\sigma(r) - \sigma(s) - \sigma'(s)(r-s)| = \left| \int_r^s \sigma''(z)(s-z)dz \right| \le \frac{\beta}{2}(r-s)^2$

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{x}; \mathbf{w}) \right|$$

$$\leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \frac{1}{2} \beta(\mathbf{w}_j \cdot \mathbf{x} - \mathbf{w}_{0,j} \cdot \mathbf{x})^2$$

 $\sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_{0,j})$

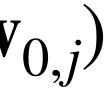


$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$: $|\sigma(r) - \sigma(s) - \sigma'(s)(r-s)| = \left| \int_r^s \sigma''(z)(s-z)dz \right| \le \frac{\beta}{2}(r-s)^2$

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_j) \right|$$

$$\leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \frac{1}{2} \beta (\mathbf{w}_{j} \cdot \mathbf{x} - \mathbf{w}_{0,j} \cdot \mathbf{x})^{2} \leq \frac{\beta}{2\sqrt{m}} \sum_{j=1}^{m} \|\mathbf{w}_{j} - \mathbf{w}_{0,j}\|^{2} \|\mathbf{x}\|^{2}$$

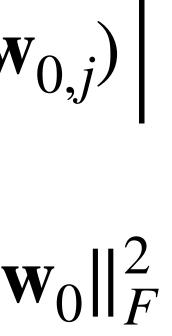


$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \,\sigma(\mathbf{w}_j \cdot \mathbf{x})$$
$$f^{lin}(\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} a_j \left(\left[\sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_{0,j} \cdot \mathbf{x} \right] + \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{w}_j \cdot \mathbf{x} \right)$$

If σ is β -smooth (meaning $|\sigma''(z)| \le \beta$ for all z), $|a_j| \le 1$, and $||x|| \le 1$: $|\sigma(r) - \sigma(s) - \sigma'(s)(r-s)| = \left| \int_r^s \sigma''(z)(s-z) dz \right| \le \frac{\beta}{2}(r-s)^2$

$$\left| f(\mathbf{x}; \mathbf{w}) - f^{lin}(\mathbf{x}; \mathbf{w}) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |a_j| \left| \sigma(\mathbf{w}_j \cdot \mathbf{x}) - \sigma(\mathbf{w}_{0,j} \cdot \mathbf{x}) - \sigma'(\mathbf{w}_{0,j} \cdot \mathbf{x}) \mathbf{x} \cdot (\mathbf{w}_j - \mathbf{w}_j) \right|$$

$$\leq \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \frac{1}{2} \beta (\mathbf{w}_{j} \cdot \mathbf{x} - \mathbf{w}_{0,j} \cdot \mathbf{x})^{2} \leq \frac{\beta}{2\sqrt{m}} \sum_{j=1}^{m} \|\mathbf{w}_{j} - \mathbf{w}_{0,j}\|^{2} \|\mathbf{x}\|^{2} \leq \frac{\beta}{2\sqrt{m}} \|\mathbf{w} - \mathbf{w}_{0,j}\|^{2} \|\mathbf{w} - \mathbf{w}_{0,j}\|^{2}$$



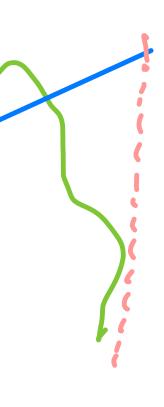
• For a two-layer net with β -smooth hidden activations, second-layer weights $\leq 1/\sqrt{m}$ with linear activation,

then for any $\|\mathbf{x}\| \le 1$, $\|f(x; \mathbf{w}) - f^{lin}(x; \mathbf{w})\| \le \frac{\beta}{2\sqrt{m}} \|\mathbf{w} - \mathbf{w}_0\|^2$

• For a two-layer net with β -smooth hidden activations, second-layer weights $\leq 1/\sqrt{m}$ with linear activation, then for any $\|\mathbf{x}\| \leq 1$, $|f(x; \mathbf{w}) - f(x; \mathbf{w})| \leq 1$

• This holds for any w and w_0 , but only for this shallow case

$$-f^{lin}(x;\mathbf{w})| \le \frac{\beta}{2\sqrt{m}} \|\mathbf{w} - \mathbf{w}_0\|^2$$



• For a two-layer net with β -smooth hidden activations, second-layer weights $\leq 1/\sqrt{m}$ with linear activation, then for any $\|\mathbf{x}\| \leq 1$, $|f(x; \mathbf{w}) - f(x; \mathbf{w})| \leq 1$

• This holds for any w and w_0 , but only for this shallow case • So if $\|\mathbf{w}_t - \mathbf{w}_0\|^2 \ll \frac{2}{\beta}\sqrt{m}$, approximation is "good enough"

$$-f^{lin}(x; \mathbf{w}) \leq \frac{\beta}{2\sqrt{m}} \|\mathbf{w} - \mathbf{w}_0\|^2$$

• For a two-layer net with β -smooth hidden activations, second-layer weights $\leq 1/\sqrt{m}$ with linear activation, then for any $\|\mathbf{x}\| \le 1$, $|f(x; \mathbf{w})|$

- This holds for any w and w_0 , but only for this shallow case • So if $\|\mathbf{w}_t - \mathbf{w}_0\|^2 \ll \frac{2}{\beta}\sqrt{m}$, approximation is "good enough"
- $\|\mathbf{w}_t \mathbf{w}_0\|^2$ is bounded as $m \to \infty$, if kernel is always full-rank

$$-f^{lin}(x;\mathbf{w})\| \le \frac{\beta}{2\sqrt{m}} \|\mathbf{w} - \mathbf{w}_0\|^2$$

• For a two-layer net with β -smooth hidden activations, second-layer weights $\leq 1/\sqrt{m}$ with linear activation, then for any $\|\mathbf{x}\| \leq 1$, $|f(x; \mathbf{w}) - \mathbf{x}| \leq 1$

- This holds for any w and w_0 , but only for this shallow case • So if $\|\mathbf{w}_t - \mathbf{w}_0\|^2 \ll \frac{2}{\beta}\sqrt{m}$, approximation is "good enough"
- $\|\mathbf{w}_t \mathbf{w}_0\|^2$ is bounded as $m \to \infty$, if kernel is always full-rank

$$-f^{lin}(x; \mathbf{w}) | \leq \frac{\beta}{2\sqrt{m}} ||\mathbf{w} - \mathbf{w}_0||^2$$

• $\|\mathbf{w}_t - \mathbf{w}_0\| = \|-\Phi(\Phi\Phi^{\mathsf{T}})^{-1}(\mathbf{I} - e^{-\frac{\eta t}{N}\mathbf{K}_0})(\mathbf{f}_0 - \mathbf{y})\|$ where Φ stacks $\phi(\mathbf{x}_i)$ $\leq \|\Phi(\Phi\Phi^{\mathsf{T}})^{-1}\|_{op} \|(\mathbf{I} - e^{-\frac{\eta t}{N}\mathbf{K}_{0}})\|_{op} \|\mathbf{f}_{0} - \mathbf{y}\|$

 $\leq \frac{1}{\sigma_{\min}(\Phi)} \cdot 1 \cdot \|\mathbf{f}_0 - \mathbf{y}\|$ for large t

Full training with any architecture

- It's generally true (with a much more complicated proof) that
 - for essentially any neural network architecture (CNNs, RNNs, GNNs, ...) • in the limit as the network becomes wider,

 - for appropriate Gaussian-distributed **w**,
 - for small SGD step sizes η ,

Tensor Programs IIb: Architectural Universality of Neural Tangent Kernel Training Dynamics

• then for any x and t, it holds that $f_t(\mathbf{x})$ converges almost surely to $f_t^{lin}(\mathbf{x})$

Greg Yang^{1*} **Etai Littwin**^{2*}

Recap of overall theory

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,

 - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{x} \right)$

$$\mathbf{I} - e^{-\frac{\eta t}{N}\mathbf{K}_0} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$$

Recap of overall theory

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,

 - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, $k_{\mathbf{w}_0}$, converges to its mean $\mathbf{E}_{\mathbf{w}}k_{\mathbf{w}}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\frac{1}{2} \right)$
 - and so as $t \to \infty$, (S)GD on the network converges to kernel regression $\hat{f}(\mathbf{X}) = \mathbf{k}_0(\mathbf{X}) \mathbf{K}_0^{-1} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{X})$ $TK_0(x_y, x_y) \dots K_0(x_y, x_W)$ $K_{0} = [K_{0}(X_{N}, X_{i}) - K_{0}(X_{N}, X_{N})]$ $\begin{bmatrix} f(x_0) \\ \vdots \\ f(x_0) \end{bmatrix} = \begin{bmatrix} K_0 K_0' (Y - f_0) + f_0 \\ 1 \end{bmatrix} = \begin{bmatrix} Y - f_0 + f_0 \\ 1 \end{bmatrix} = \begin{bmatrix} Y - f_0 + f_0 \\ 1 \end{bmatrix} = \begin{bmatrix} Y - f_0 + f_0 \end{bmatrix}$

$$\mathbf{I} - e^{-\frac{\eta t}{N}\mathbf{K}_0} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$$

Recap of overall theory

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,

 - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, $k_{\mathbf{w}_0}$, converges to its mean $\mathbf{E}_{\mathbf{w}}k_{\mathbf{w}}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{x} \right)^{-1} \left(\mathbf{x} \right)^$
 - and so as $t \to \infty$, (S)GD on the network converges to kernel regression $\hat{f}(\mathbf{x}) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$ • predictions on training set: $\mathbf{K}_0 \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + \mathbf{f}_0 = \mathbf{y} - \mathbf{f}_0 + \mathbf{f}_0 = \mathbf{y}$

$$\mathbf{I} - e^{-\frac{\eta t}{N}\mathbf{K}_0} \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$$

Vector outputs

- Network can have O > 1 outputs

 - Usually write $\mathbf{K}_0 \in \mathbb{R}^{NO \times NO}$, $\mathbf{k}_0(\mathbf{x}) \in \mathbb{R}^{1 \times NO}$, $\mathbf{y} \in \mathbb{R}^{NO}$

• $\phi_{\mathbf{w}}(\mathbf{x}) = \nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w})|_{\mathbf{w}} \in \mathbb{R}^{O \times D}, \quad k_{\mathbf{w}}(\mathbf{x}_1, \mathbf{x}_2) = \phi_{\mathbf{w}}(\mathbf{x}_1) \phi_{\mathbf{w}}(\mathbf{x}_2)^{\mathsf{T}} \in \mathbb{R}^{O \times O}$

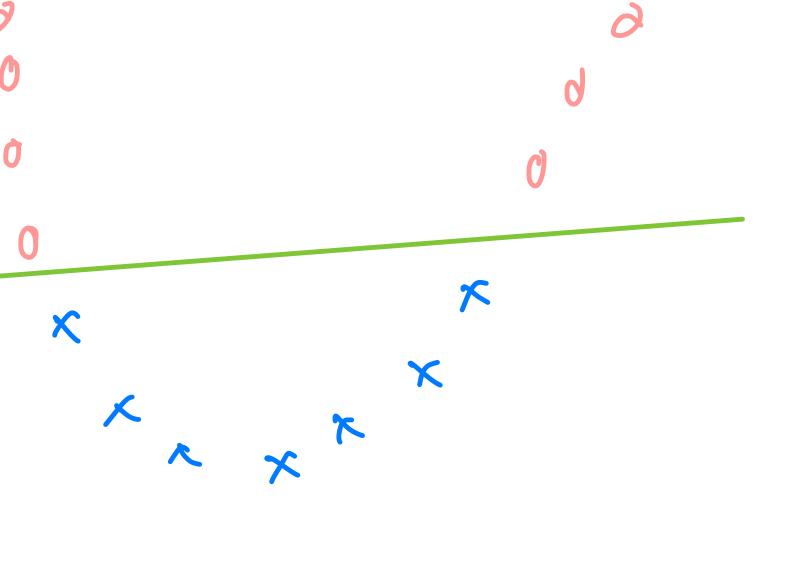
Then $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x}) \in \mathbb{R}^O$

Other loss functions

- Can use other losses than square loss; get same kind of ODE $\frac{\mathrm{d}}{\mathrm{d}t} f^{lin}(\mathbf{x}; \mathbf{w}_t) = -\frac{\eta}{N} \mathbf{k}_0(\mathbf{x}) \left[\nabla_{\hat{\mathbf{y}}} L_S(\hat{\mathbf{y}}, \mathbf{y}_i) \Big|_{\hat{\mathbf{y}}=f(\mathbf{x}_i, \mathbf{w}_t)} \right]_{i=1}^N$
 - Doesn't necessarily have a closed form anymore
 - Square loss isn't such a bad loss, even for classification!
 - Hui and Belkin (2020)

sed form anymore ss, even for classification!

Kernel regression



000 ××××× 0000

- Kernel models are linear models in feature space
- - For example, polynomial features like $\phi(\mathbf{x}) = (1, x, x^2)$
 - Can in general map to any Hilbert space, not just \mathbb{R}^D • More on this later!
- The kernel function is $k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
 - kernel of a linear map (null space), the Linux kernel, ...
- The space of functions $f(\mathbf{x}; \mathbf{w}) = \langle \phi(\mathbf{x}), \mathbf{w} \rangle$ for all possible \mathbf{w} is known as a reproducing kernel Hilbert space (RKHS)

Kernel methods

• A usual real-valued linear model is $f(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle^{\frac{1}{2} \times \cdots \times \frac{1}{2} \sqrt{2}}$

• Kernel models are $f(\mathbf{x}; \mathbf{w}) = \langle \phi(\mathbf{x}), \mathbf{w} \rangle$ for some fixed feature map $\phi(\mathbf{x})$

• Not the same as kernel density estimation, convolutional kernels,

Kernel regression • For a fixed ϕ , minimize $L_{S}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (\langle \phi(\mathbf{x}_{i}), \mathbf{w} \rangle - \mathbf{y}_{i})^{2}$

- If D > N, there are typically infinitely many w with $L_S(w) = 0$
- One strategy: start at some \mathbf{w}_0 and do gradient descent until you hit one
 - If $\eta < \frac{2}{\sigma_{max}(X)^2}$, gradient descent converges to (proof via SVD)
 - $\hat{\mathbf{w}} = \operatorname{argmin} \|\mathbf{w} \mathbf{w}_0\| = \mathbf{v}_0$ $\mathbf{W}: \mathbf{\Phi}\mathbf{W} = \mathbf{V}$
 - Predictions are $\langle \varphi(\mathbf{X}), \hat{\mathbf{W}} \rangle = \mathbf{k}$
 - i.e. exactly $\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) \mathbf{K}^{-1}$

$$\Phi^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y} + (\mathbf{I} - \Phi^{\mathsf{T}}\mathbf{K}^{-1}\Phi)\mathbf{w}_{0}$$

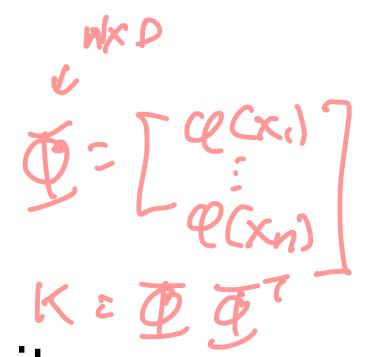
$$\Phi^{\dagger}\gamma$$

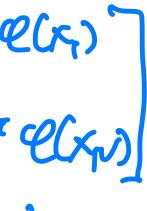
$$(\mathbf{x})\mathbf{K}^{-1}\mathbf{y} + f_{0}(\mathbf{x}) - \Phi^{\dagger}\mathbf{K}^{-1}\mathbf{f}_{0}$$

$$(\mathbf{y} - \mathbf{f}_{0}) + f_{0}(\mathbf{x}) \text{ from before}$$

$$= \mathbf{y} (\mathbf{x})$$

$$\mathbf{y} = \mathbf{y} (\mathbf{x})$$





Kernel ridge regression • The more common way to choose a solution is ridge regression: for $\lambda > 0$, $\hat{\mathbf{w}}_{\lambda} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (\langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle - y_{i})^{2} + \lambda$ $= \mathbf{w}_{0} + \mathbf{\Phi}^{\mathsf{T}} (\mathbf{K} + N\lambda \mathbf{I})^{-1} (\mathbf{y} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{w}_{0})$ $\langle \hat{\mathbf{w}}_{\lambda}, \phi(\mathbf{x}) \rangle = f_0(\mathbf{x}) + \mathbf{k}(\mathbf{x}) (\mathbf{K} + N\lambda \mathbf{I})^{-1} (\mathbf{y} - \mathbf{f}_0)$

$$\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_i) \rangle - y_i \rangle^2 + \lambda \|\mathbf{w} - \mathbf{w}_0\|^2$$

Kernel ridge regression

- - $\hat{\mathbf{w}}_{\lambda} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (\langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle y_{i})^{2} + \sum_{$
 - $\langle \hat{\mathbf{w}}_{\lambda}, \phi(\mathbf{x}) \rangle = f_0(\mathbf{x}) + \mathbf{k}(\mathbf{x})(\mathbf{K} + N\lambda \mathbf{I})^{-1}(\mathbf{y} \mathbf{f}_0)$
- An equivalent view, kernel ridge regression:
 - The RKHS \mathscr{H} is a Hilbert space, and so has a norm $\|f\|_{\mathscr{H}}$

$$\hat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (f(\mathbf{x}_{i}) - y_{i})^{2} + \lambda \|f - f_{0}\|_{\mathcal{H}}^{2}$$

• RKHS norm for $f(x) = \langle \mathbf{w}, \phi(x) \rangle$ is $||f||_{\mathscr{H}} = ||\mathbf{w}||$

• The more common way to choose a solution is ridge regression: for $\lambda > 0$,

$$\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_i) \rangle - y_i \rangle^2 + \lambda \|\mathbf{w} - \mathbf{w}_0\|^2$$

Kernel ridge regression

- - $\hat{\mathbf{w}}_{\lambda} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (\langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle y_{i})^{2} + \sum_{$ $\langle \hat{\mathbf{w}}_{\lambda}, \phi(\mathbf{x}) \rangle = f_0(\mathbf{x}) + \mathbf{k}(\mathbf{x})(\mathbf{K} + N\lambda \mathbf{I})^{-1}(\mathbf{y} - \mathbf{f}_0)$
- An equivalent view, kernel ridge regression:
 - The RKHS \mathscr{H} is a Hilbert space, and so has a norm $\|f\|_{\mathscr{H}}$

$$\hat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{N} \sum_{\substack{N \\ i=1}}^{N}$$

- RKHS norm for $f(x) = \langle \mathbf{w}, \phi(x) \rangle$ is $||f||_{\mathscr{H}} = ||\mathbf{w}||$

• The more common way to choose a solution is ridge regression: for $\lambda > 0$,

$$\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_i) \rangle - y_i \rangle^2 + \lambda \|\mathbf{w} - \mathbf{w}_0\|^2$$

$$f(\mathbf{x}_i) - y_i)^2 + \lambda \|f - f_0\|_{\mathscr{H}}^2$$

• Note: equivalent to use $\mathbf{w}_0 = \mathbf{0} / f_0(\mathbf{x}) = 0$ but fit residuals $y_i - f_0(\mathbf{x}_i)$

Kernel "ridgeless" regression

$$\hat{f}_{\lambda}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) (\mathbf{K} + N\lambda \mathbf{I})$$
$$\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) \mathbf{K}^{-1} (\mathbf{x})$$

• Running small-LR gradient descent from \mathbf{w}_0 gives same predictions as $\lim \hat{f}_{\lambda}$: $\lambda \rightarrow 0$

 $\mathbf{I})^{-1}(\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$ $(\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$

Kernel "ridgeless" regression

• Running small-LR gradient descent from \mathbf{w}_0 gives same predictions as $\lim \hat{f}_{\lambda}$: $\lambda \rightarrow 0$ $\mathbf{J})^{-1}(\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$ $(\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$

$$\hat{f}_{\lambda}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) (\mathbf{K} + N\lambda) \mathbf{I}$$
$$\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) \mathbf{K}^{-1} (\mathbf{x})$$

- We know some stuff about kernel predictors, e.g. what kinds of functions they can learn without overfitting
 - (it's the functions with small $||f f_0||_{\mathscr{H}}$)

- As width $m \to \infty, D \to \infty$ as well

- As width $m \to \infty, D \to \infty$ as well
 - But $k_{\mathbf{w}}$ doesn't change too much as $m \to \infty$!

- As width $m \to \infty, D \to \infty$ as well
 - But $k_{\mathbf{w}}$ doesn't change too much as $m \to \infty$!
- We can still do stuff in infinite-dimensional RKHSes!

- As width $m \to \infty, D \to \infty$ as well
 - But $k_{\mathbf{w}}$ doesn't change too much as $m \to \infty$!
- We can still do stuff in infinite-dimensional RKHSes!

• The w for an empirical NTK is in \mathbb{R}^D , with D the total number of parameters

• Gaussian kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2\right)$ is also infinite-dim

- As width $m \to \infty, D \to \infty$ as well
 - But $k_{\mathbf{w}}$ doesn't change too much as $m \to \infty$!
- We can still do stuff in infinite-dimensional RKHSes!

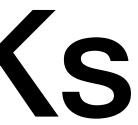
• The w for an empirical NTK is in \mathbb{R}^D , with D the total number of parameters

• Gaussian kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{1}{2\sigma^2} ||\mathbf{x}_1 - \mathbf{x}_2||^2\right)$ is also infinite-dim • We just only use kernel form: $\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) \mathbf{K}^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$

- As width $m \to \infty, D \to \infty$ as well
 - But $k_{\mathbf{w}}$ doesn't change too much as $m \to \infty$!
- We can still do stuff in infinite-dimensional RKHSes! • Gaussian kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2\right)$ is also infinite-dim • We just only use kernel form: $\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x}) \mathbf{K}^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$ • Representer theorem implies that

 - $\hat{f}(\mathbf{x}) f_0(\mathbf{x}) = \sum \alpha_i k(\mathbf{x}, \mathbf{x}_i) = \mathbf{k}(\mathbf{x}) \cdot \boldsymbol{\alpha} \quad \text{for some } \boldsymbol{\alpha} \in \mathbb{R}^N$ i=1

Uses and limitations of infinite NTKs



Great method for small-data tasks

Classifier	Friedman Rank	Average Accuracy	P90	P95	PMA
NTK	28.34	$81.95\%{\pm}14.10\%$	88.89%	72.22%	$95.72\% \ \pm 5.17\%$
NN (He init)	40.97	$80.88\%{\pm}14.96\%$	81.11%	65.56%	$94.34\% \pm 7.22\%$
NN (NTK init)	38.06	$81.02\%{\pm}14.47\%$	85.56%	60.00%	$94.55\% \pm 5.89\%$
RF	33.51	$81.56\%\ \pm 13.90\%$	85.56%	67.78%	$95.25\% \pm 5.30\%$
Gaussian Kernel	35.76	$81.03\%\pm15.09\%$	85.56%	72.22%	$94.56\% \pm 8.22\%$
Polynomial Kernel	38.44	$78.21\% \pm 20.30\%$	80.00%	62.22%	$91.29\% \pm 18.05\%$

Table 1: Comparisons of different classifiers on 90 UCI datasets. P90/P95: the number of datasets a classifier achieves 90%/95% or more of the maximum accuracy, divided by the total number of datasets. PMA: average percentage of the maximum accuracy.

Good for distinguishing distributions

CIFAR	ME	SCF	C2ST-S	C2ST-L	M-O	M-D
2000	0.588	0.171	0.452	0.529	0.316	0.744

Table 5. SCNTK for outlier detection. SCNTK, CNTK with all relu activations (CNTK-relu), and naive Gaussian KDE are compared for the outlier detection task with CIFAR10 and SVHN datasets. With a fixed kernel, SCNTK shows a promising results for OOD detection in both settings.

Inlier	Outlier	Gaussian	CNTK-relu	SCNTK
CIFAR10	SVHN	0.82	0.71	0.85
SVHN	CIFAR10	0.20	0.51	0.80

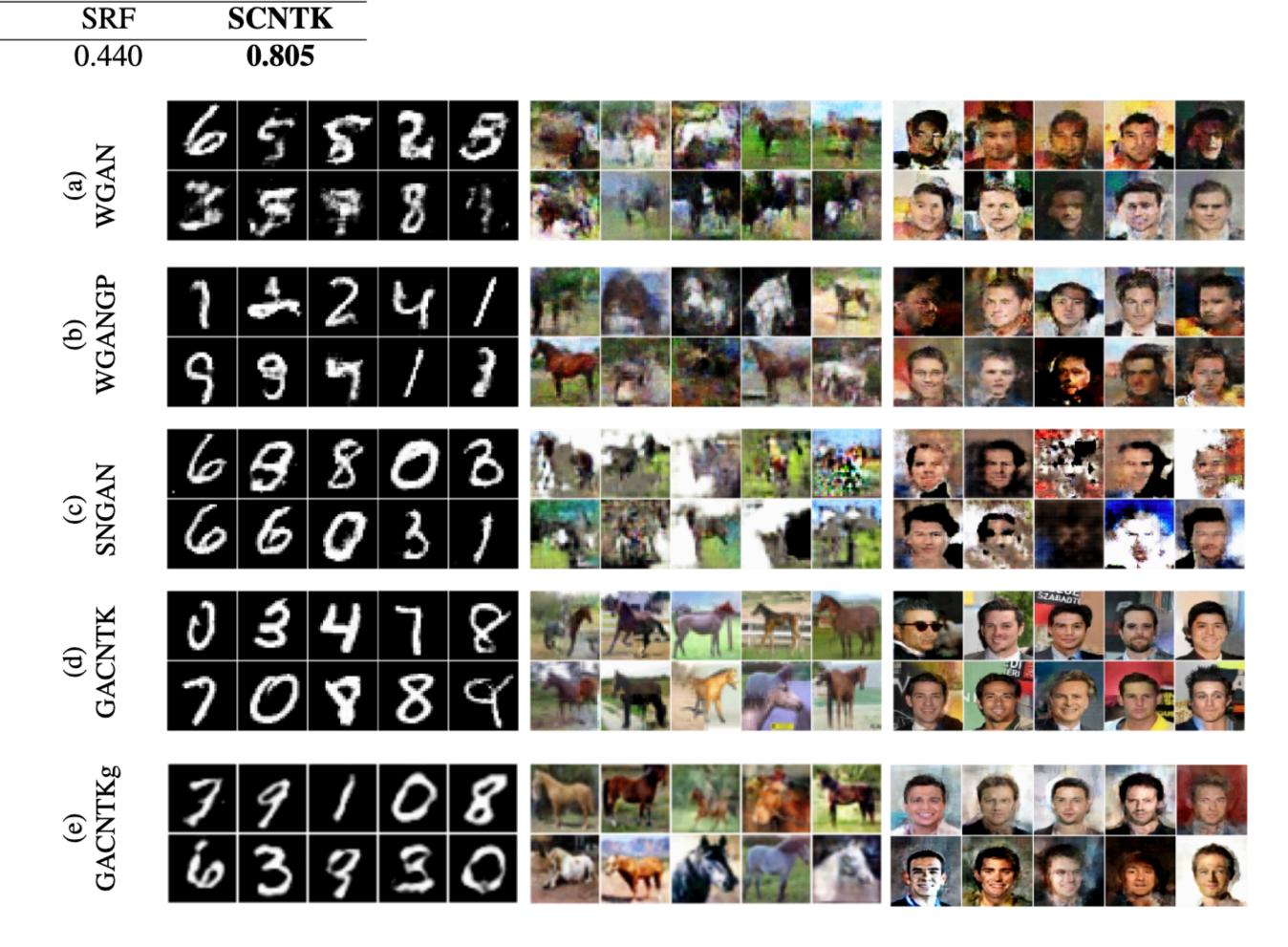


Figure 1: The images generated by different methods on MNIST, CIFAR-10, and CelebA datasets given only 256 training images.

Useful signal for trainability of architectures

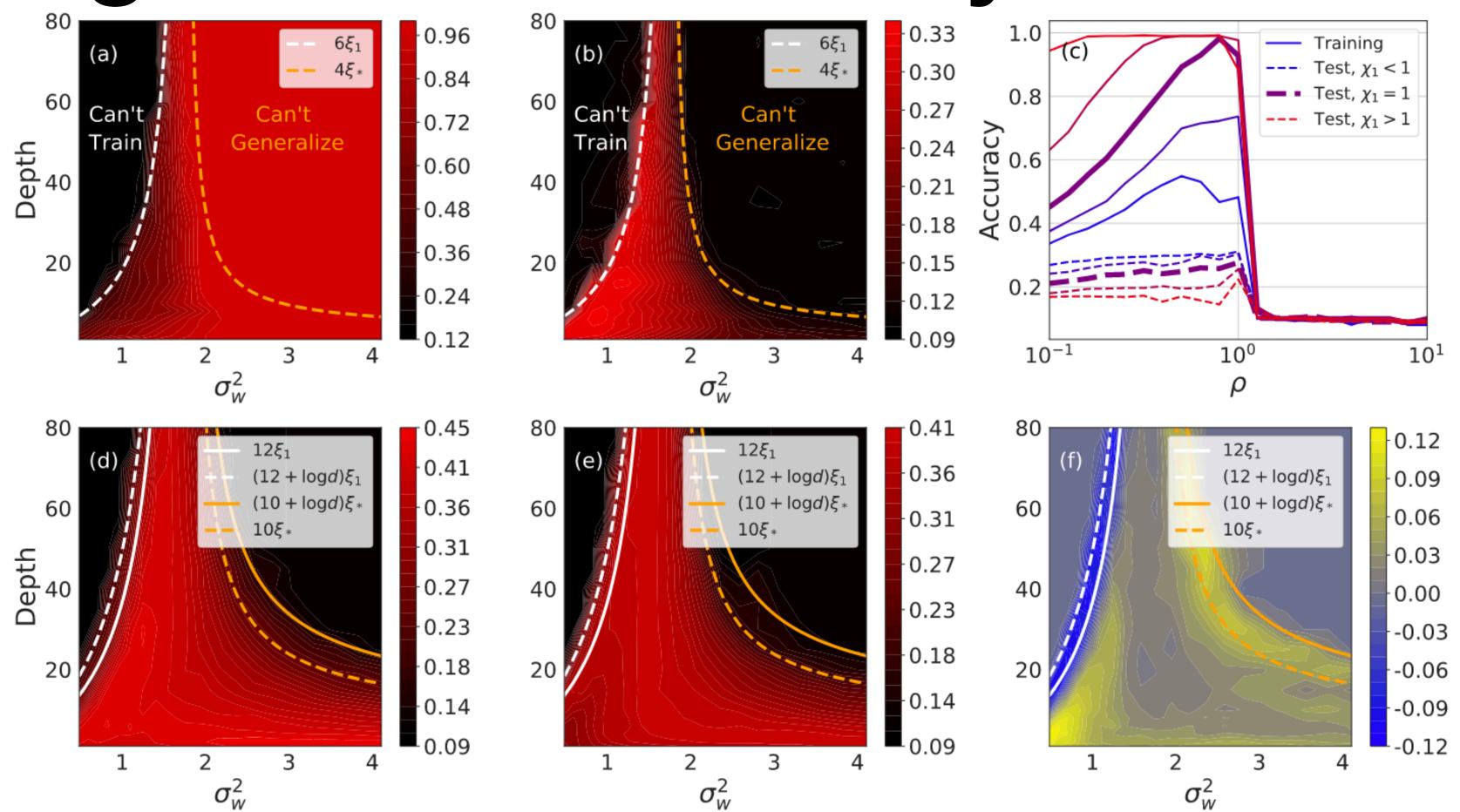


Figure 2. Trainability and generalization are captured by $\kappa^{(l)}$ and $P(\Theta^{(l)})$. (a,b) The training and test accuracy of CNN-F trained with SGD. The network is untrainable above the green line because $\kappa^{(l)}$ is too large and is ungeneralizable above the orange line because $P(\Theta^{(l)})$ is too small. (c) The accuracy vs learning rate for FCNs trained with SGD sweeping over the weight variance. (d,e) The test accuracy of CNN-P and CNN-F using kernel regression. (f) The difference in accuracy between CNN-P and CNN-F networks.

http://proceedings.mlr.press/v119/xiao20b/xiao20b.pdf

- For a scalar problem, the kernel matrix \mathbf{K} is $N \times N$
 - Solving kernel regression exactly takes $\mathcal{O}(N^2)$ memory, $\sim \mathcal{O}(N^3)$ time
 - Computing K is really slow / lots of memory for big architectures
 - Empirical NTK generally much faster, lower-memory than infinite NTK • With "normal" deep learning, everything is $\mathcal{O}(N)$

Drawback: computation

- For a scalar problem, the kernel matrix \mathbf{K} is $N \times N$
 - Solving kernel regression exactly takes $\mathcal{O}(N^2)$ memory, $\sim \mathcal{O}(N^3)$ time
 - Computing K is really slow / lots of memory for big architectures
 - Empirical NTK generally much faster, lower-memory than infinite NTK
 - With "normal" deep learning, everything is $\mathcal{O}(N)$
- One possible help: "sketching" approximations
 - $\hat{k}(\mathbf{X}_1, \mathbf{X}_2) = \psi(\mathbf{X}_1) \cdot \psi(\mathbf{X}_2)$ with $\psi(\mathbf{X}) \in \mathbb{R}^p$

Drawback: computation

- For a scalar problem, the kernel matrix \mathbf{K} is $N \times N$

 - With "normal" deep learning, everything is $\mathcal{O}(N)$
- One possible help: "sketching" approximations
 - $\hat{k}(\mathbf{X}_1, \mathbf{X}_2) = \psi(\mathbf{X}_1) \cdot \psi(\mathbf{X}_2)$ with $\psi(\mathbf{X}) \in \mathbb{R}^p$

Drawback: computation

• Solving kernel regression exactly takes $\mathcal{O}(N^2)$ memory, $\sim \mathcal{O}(N^3)$ time

• Computing K is really slow / lots of memory for big architectures

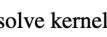
Empirical NTK generally much faster, lower-memory than infinite NTK

Table 1: Test accuracy and runtime to solve CNTK regression and its approximations on CIFAR-10. (*) means that the result is copied from Arora et al. [5].

	CNT	KSketch	I (ours)		GRADRF	7	Exact CNTK
Feature dimension	4,096	$8,\!192$	$16,\!384$	9,328	17,040	42,816	
Test accuracy (%) Time (s)	67.58 780	70.46 1,870	72.06 5,160	62.49 300	62.57 360	65.21 580	70.47* > 1,000,000

Table 2: MSE and runtime on large-scale UCI datasets. We measure the entire time to solve kernel ridge regression. (-) means Out-of-Memory error.

	Millio	onSongs	WorkLoads CT			Prote		
# of data points (n)	467	7,315	179,585		53,500		39,61	
	MSE	Time (s)	MSE	Time (s)	MSE	Time (s)	MSE	Т
RBF Kernel RFF	 109.50	231	$ 4.034 \times 10^4$	53.0	35.37 48.20	59.23 15.2	18.96 19.72	
NTK NTKRF (ours) NTKSKETCH (ours)		- 95 36	- 3.554×10^4 3.538×10^4	35.7 27.5	30.52 46.91 46.52	72.10 2.12 18.8	20.24 20.51 21.19	



CNN

• No.

- No.
- Real neural net optimization isn't in the "NTK regime"

- No.
- Real neural net optimization isn't in the "NTK regime"

Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+%

- No.
- Real neural net optimization isn't in the "NTK regime"
- NTK regime doesn't allow for feature learning the kernel doesn't change...

Best NTK models get ~70% accuracy on CIFAR-10, compared to 99+%

- Let's try to learn a single ReLU unit, $f^*(\mathbf{x}) = \operatorname{ReLU}(\langle w^*, \mathbf{x} \rangle + b^*)$
 - Some choice with $||w^*|| = d^3$, $|b^*| \le 6d^4 + 1$

On the Power and Limitations of Random Features for Understanding Neural Networks

Gilad Yehudai Ohad Shamir Weizmann Institute of Science {gilad.yehudai,ohad.shamir}@weizmann.ac.il

nit, $f^*(\mathbf{x}) = \operatorname{ReLU}(\langle w^*, \mathbf{x} \rangle + b^*)$ $|b^*| \le 6d^4 + 1$

- Let's try to learn a single ReLU unit, $f^*(\mathbf{X}) = \operatorname{ReLU}(\langle w^*, \mathbf{X} \rangle + b^*)$
 - Some choice with $||w^*|| = d^3$, $|b^*| \le 6d^4 + 1$
 - Gradient descent can learn this with polynomially many samples

On the Power and Limitations of Random Features for Understanding Neural Networks

Ohad Shamir Gilad Yehudai Weizmann Institute of Science {gilad.yehudai,ohad.shamir}@weizmann.ac.il

- Let's try to learn a single ReLU unit, $f^*(\mathbf{X}) = \operatorname{ReLU}(\langle w^*, \mathbf{X} \rangle + b^*)$
 - Some choice with $||w^*|| = d^3$, $|b^*| \le 6d^4 + 1$

 - Gradient descent can learn this with polynomially many samples Kernel-based methods require at least one of

On the Power and Limitations of Random Features for Understanding Neural Networks

Ohad Shamir Gilad Yehudai Weizmann Institute of Science {gilad.yehudai,ohad.shamir}@weizmann.ac.il

- Let's try to learn a single ReLU unit, $f^*(\mathbf{X}) = \operatorname{ReLU}(\langle w^*, \mathbf{X} \rangle + b^*)$
 - Some choice with $||w^*|| = d^3$, $|b^*| \le 6d^4 + 1$

 - Gradient descent can learn this with polynomially many samples Kernel-based methods require at least one of
 - exponentially many samples

Ohad Shamir Gilad Yehudai Weizmann Institute of Science {gilad.yehudai,ohad.shamir}@weizmann.ac.il

On the Power and Limitations of Random Features for Understanding Neural Networks

- Let's try to learn a single ReLU unit, $f^*(\mathbf{x}) = \operatorname{ReLU}(\langle w^*, \mathbf{x} \rangle + b^*)$
 - Some choice with $||w^*|| = d^3$, $|b^*| \le 6d^4 + 1$

 - Gradient descent can learn this with polynomially many samples Kernel-based methods require at least one of
 - exponentially many samples
 - exponentially large RKHS norm (i.e. hard to learn)

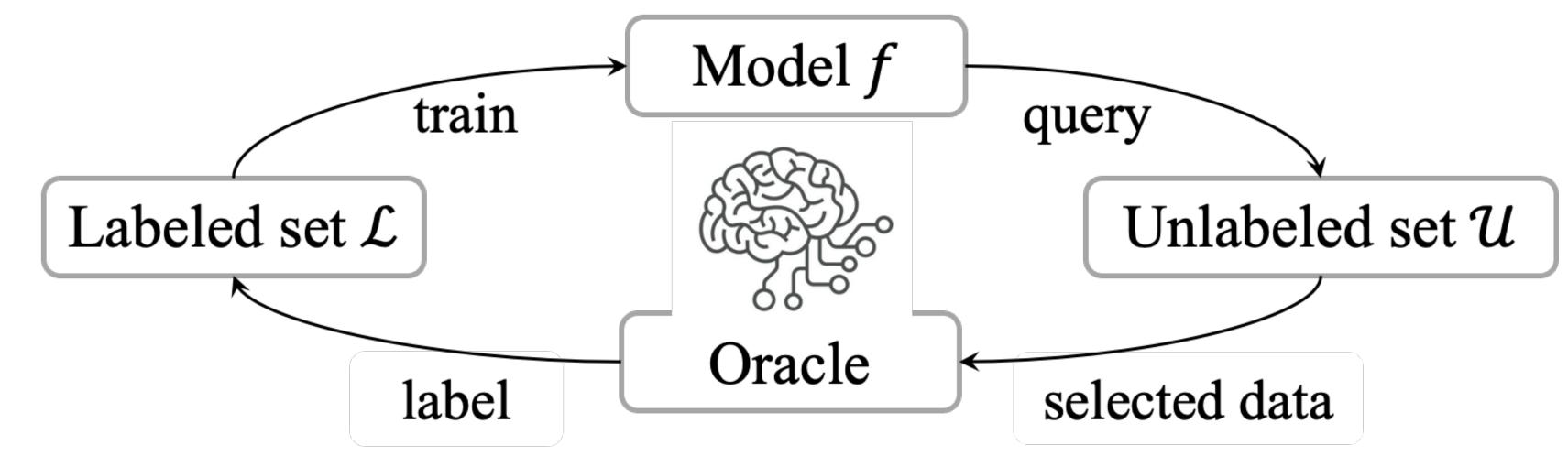
Gilad Yehudai

- On the Power and Limitations of Random Features for Understanding Neural Networks
 - Ohad Shamir Weizmann Institute of Science {gilad.yehudai,ohad.shamir}@weizmann.ac.il

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

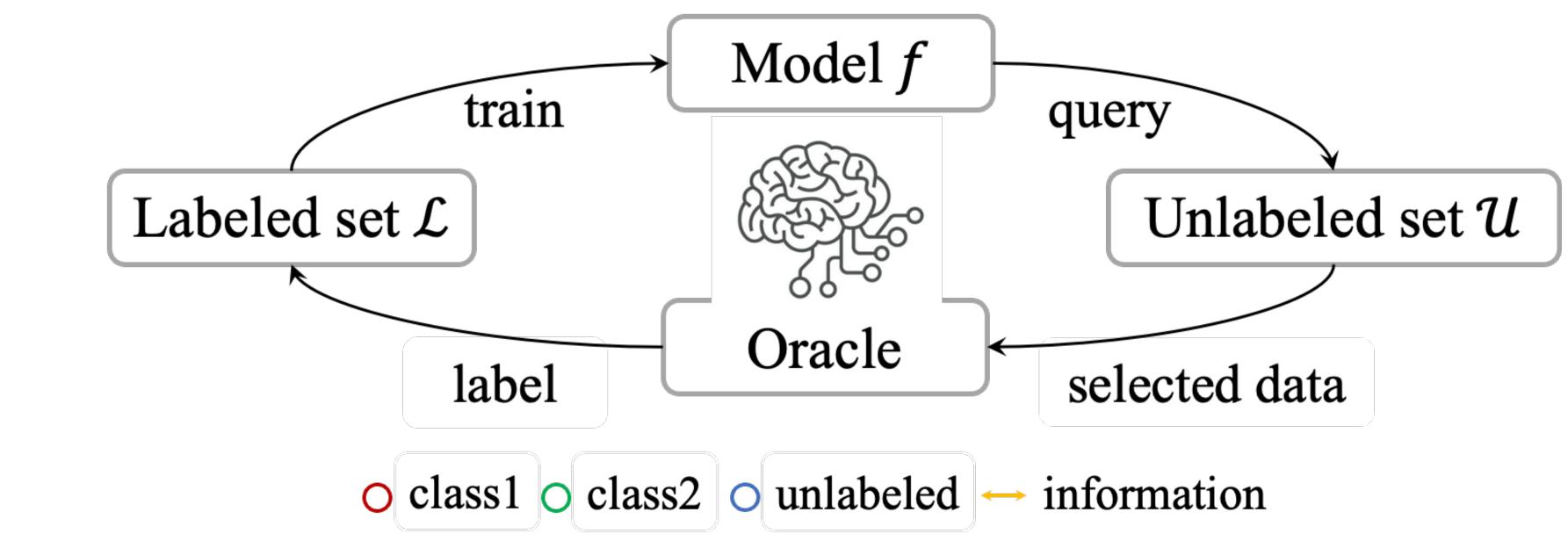
Eran Malach Pritish Kamath Emmanuel Abbe Nathan Srebro Collaboratio			Hebrew University of Jerusalem Toyota Technological Institute at Chie EPFL Toyota Technological Institute at Chie on on the Theoretical Founda	emmanuel.abbe	@ttic.edu e@epfl.ch @ttic.edu	
NTK at same Initialization				NTK at alternate randomized Initialization	NTK of arbitrary model or even an arbitrary Kernel	
GD with unbiased initialization $(\forall_x f_{\theta_0}(x) = 0)$ ensures small error		 NTK edge ≥ poly⁻¹ (Thm. 1) NTK edge can be < poly⁻¹ while GD reaches 0 loss (Separation 1) 		Edge with any kernel can be < poly ⁻¹ while GD reaches 0 loss (Separation 2)		
GD with arbitrary init. ensures	Kernel (or alt init) can depend on input dist. $\mathcal{D}_{\mathcal{X}}$	$\begin{array}{c c} \text{nit} \\ \text{depend} \\ \text{nput} \\ \mathcal{D}_{\mathcal{X}} \\ \text{-indep} \end{array} \begin{array}{c c} \text{NTK edge can be} = 0 \\ \text{while GD reaches arb. low loss} \\ (\text{Separation 3}) \end{array}$		 NTK edge ≥ poly⁻¹ (Thm. 2) NTK edge can be < poly⁻¹ while GD reaches 0 loss (Separation 2) 	Edge can be < poly ⁻¹ while GD reaches 0 loss (Separation 2)	
small error	Dist-indep kernels			edge with any kernel can be $< \exp^{-1}$ while GD reaches arb. low loss (Separation 4)		

Uses of empirical NTKs



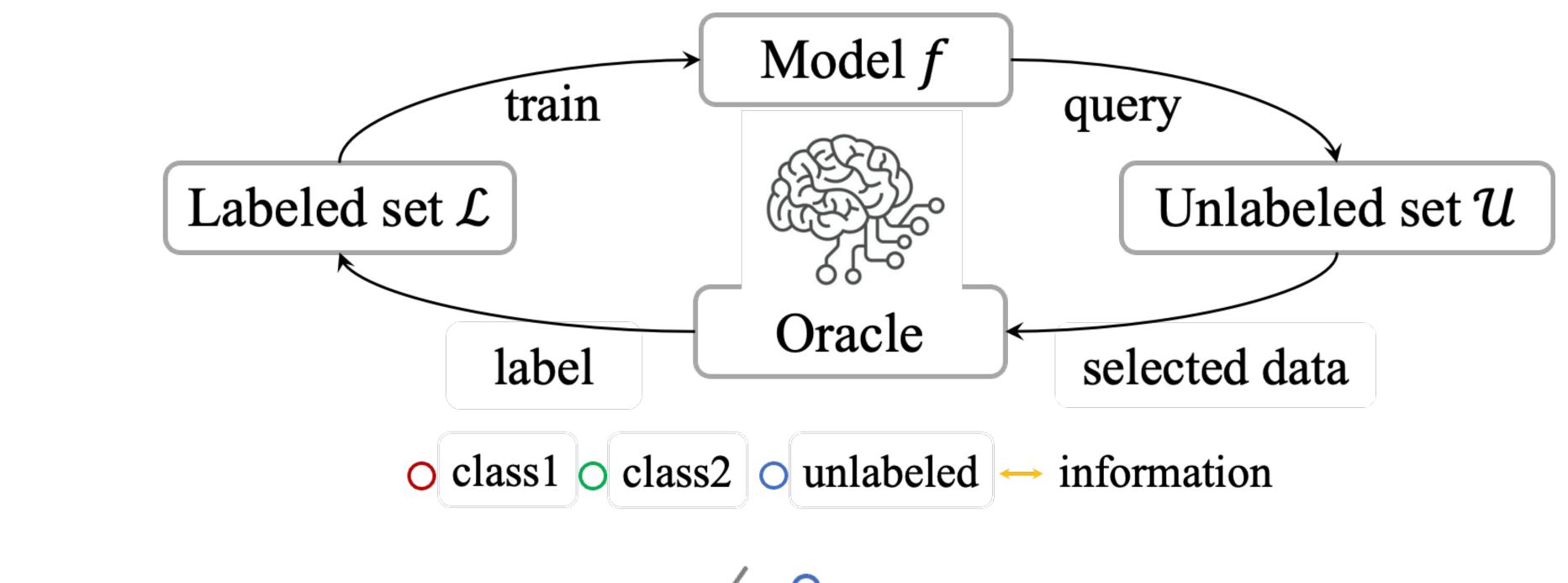
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* University of British Columbia lemohama@cs.ubc.ca Wonho Bae* University of British Columbia whbae@cs.ubc.ca Danica J. Sutherland UBC & Amii dsuth@cs.ubc.ca



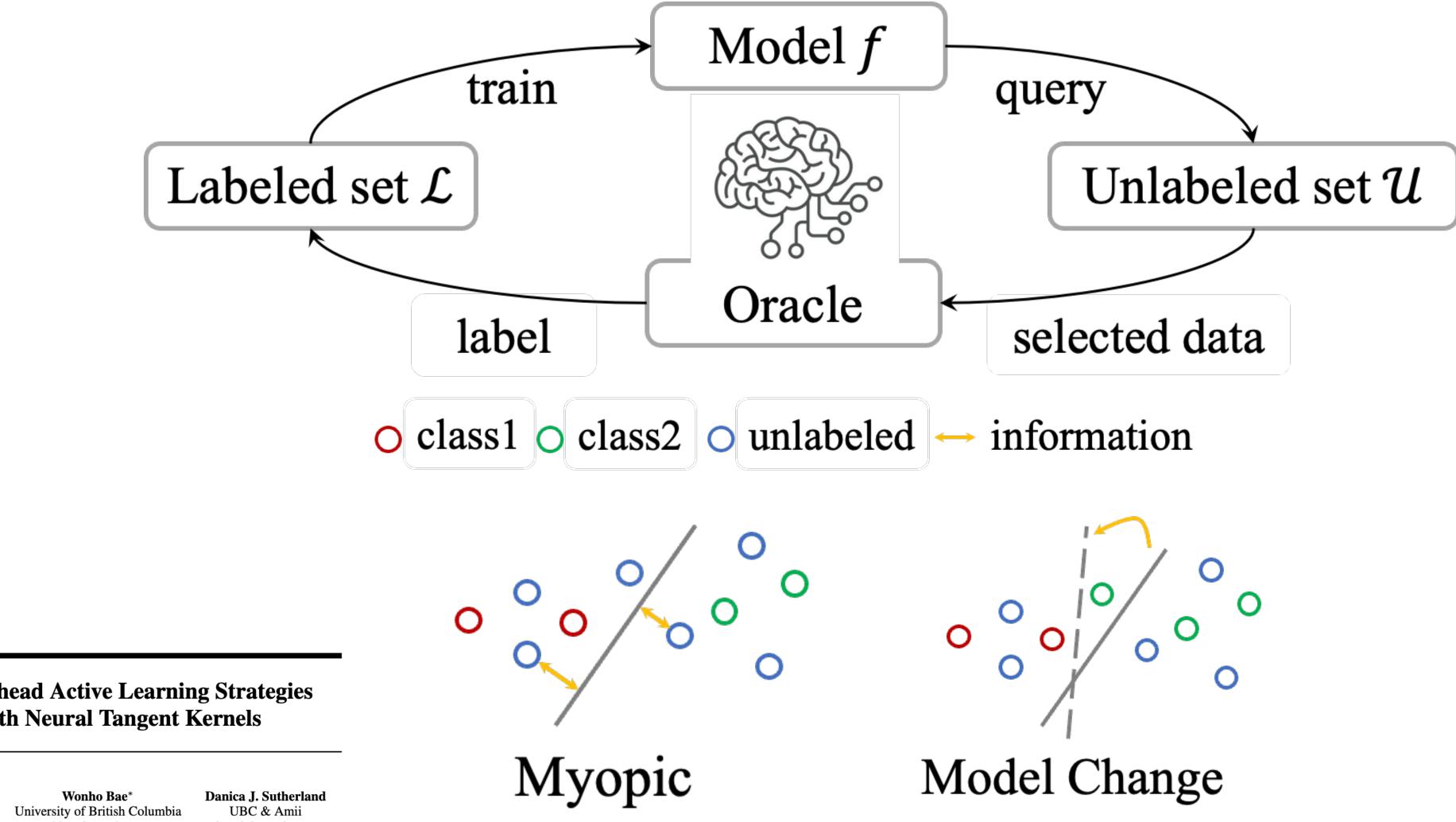
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* University of British Columbia lemohama@cs.ubc.ca Wonho Bae* University of British Columbia whbae@cs.ubc.ca Danica J. Sutherland UBC & Amii dsuth@cs.ubc.ca



Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* University of British Columbia lemohama@cs.ubc.ca Wonho Bae* University of British Columbia whbae@cs.ubc.ca Danica J. Sutherland UBC & Amii dsuth@cs.ubc.ca Myopic

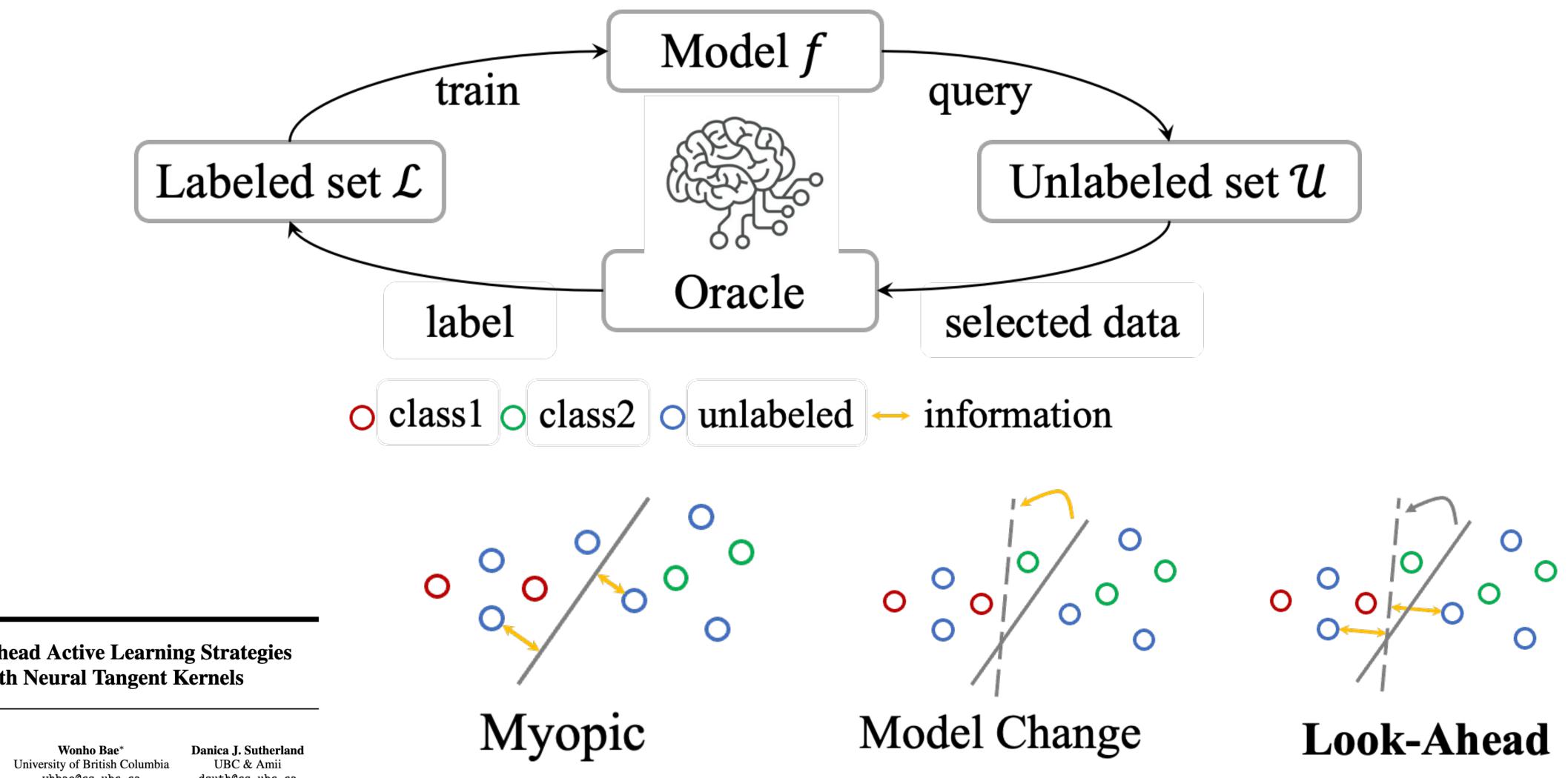


Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

Mohamad Amin Mohamadi* University of British Columbia lemohama@cs.ubc.ca

whbae@cs.ubc.ca

dsuth@cs.ubc.ca



Making Look-Ahead Active Learning Strategies **Feasible with Neural Tangent Kernels**

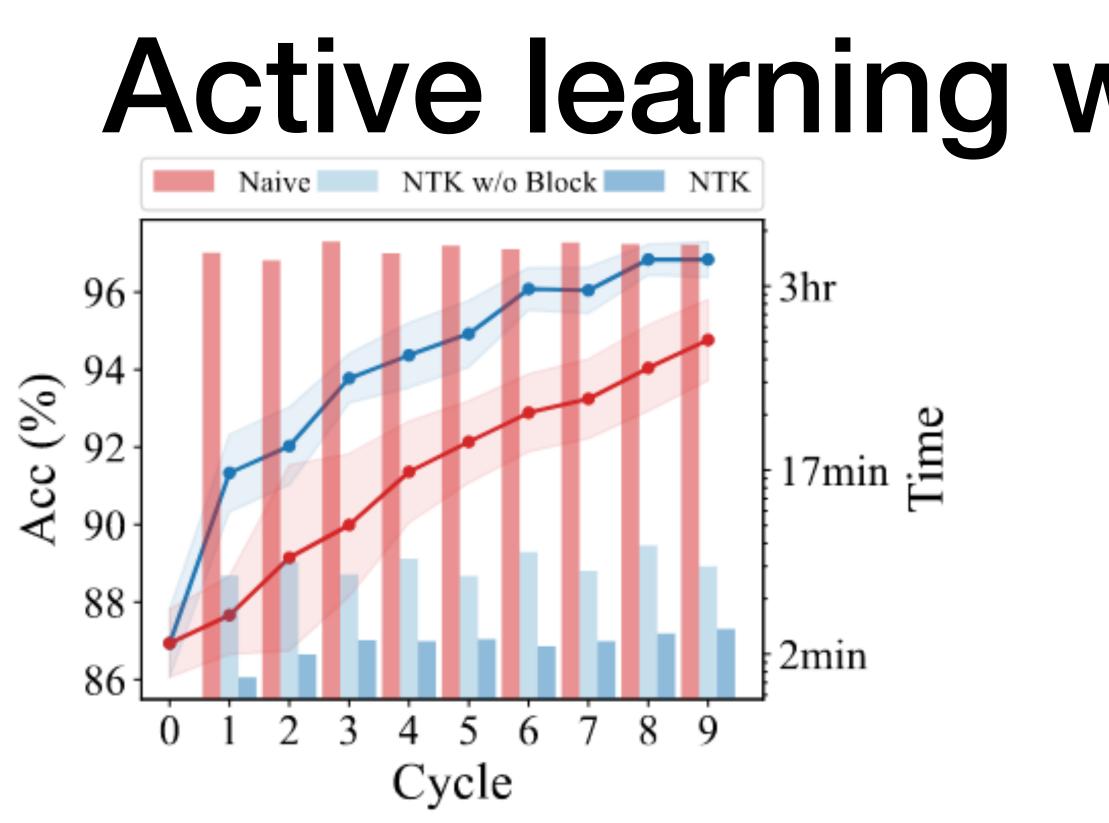
Mohamad Amin Mohamadi* University of British Columbia lemohama@cs.ubc.ca

whbae@cs.ubc.ca

dsuth@cs.ubc.ca

- Given a model $f(\mathbf{X}; \mathbf{W})$ trained on S
- What our model would be if we retrained on $S^+ = S \cup \{(\mathbf{x}^+, y^+)\}$? Too expensive to actually retrain
- We can take a Taylor expansion around current weights w
- Then ask questions about $f^{lin}(x; \mathbf{w}^+)$ to pick which point to query • e.g. measure $\sum \|f^{lin}(\mathbf{x}; \mathbf{w}^+) - f(\mathbf{x}; \mathbf{w})\|$ X∈U

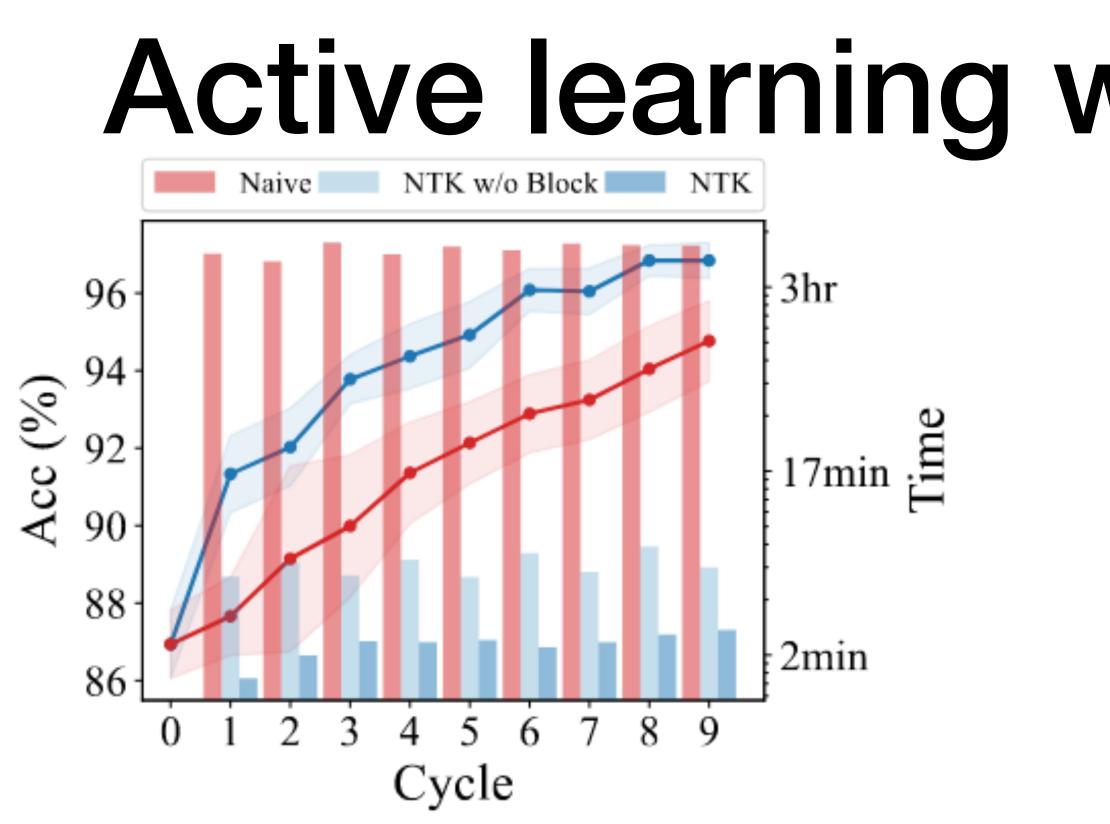
Active learning: look-ahead criteria



(a) Naïve look-ahead acquisition versus NTK approximation. Bars show runtime per cycle.

Active learning with empirical NTKs

Far faster + better performance than actually retraining with the new data

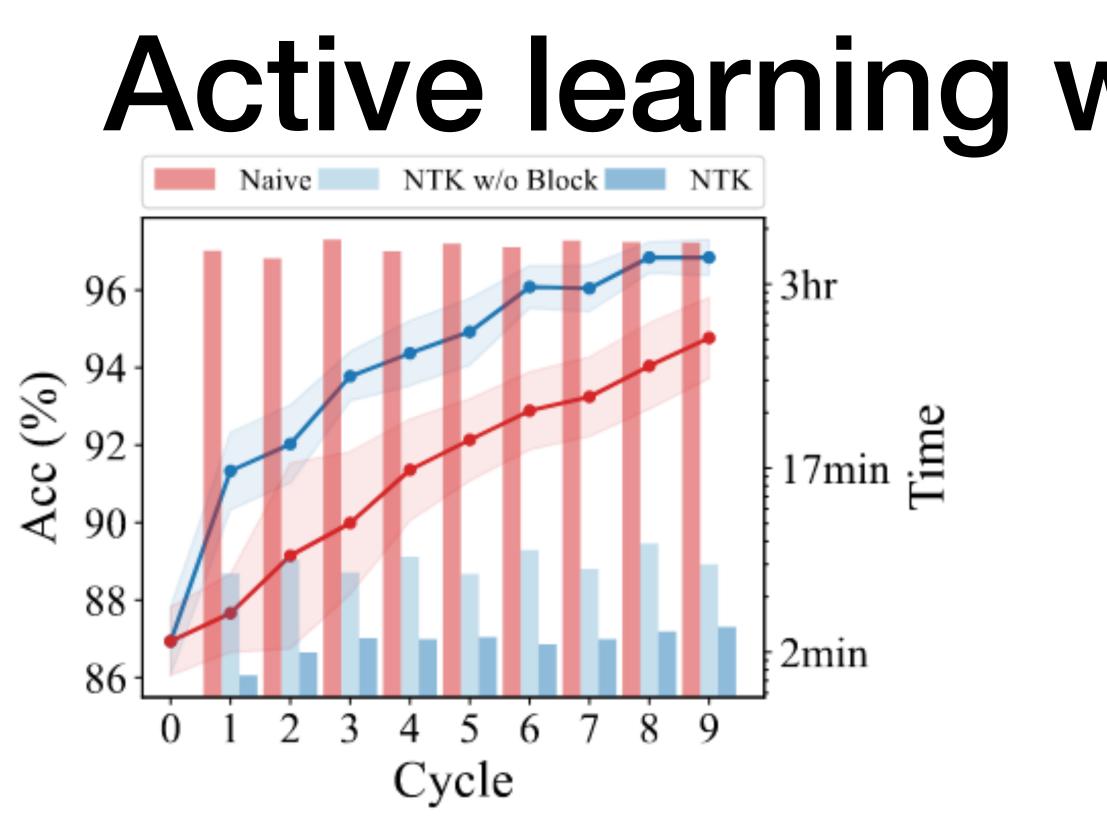


(a) Naïve look-ahead acquisition versus NTK approximation. Bars show runtime per cycle.

- step of SGD

Active learning with empirical NTKs

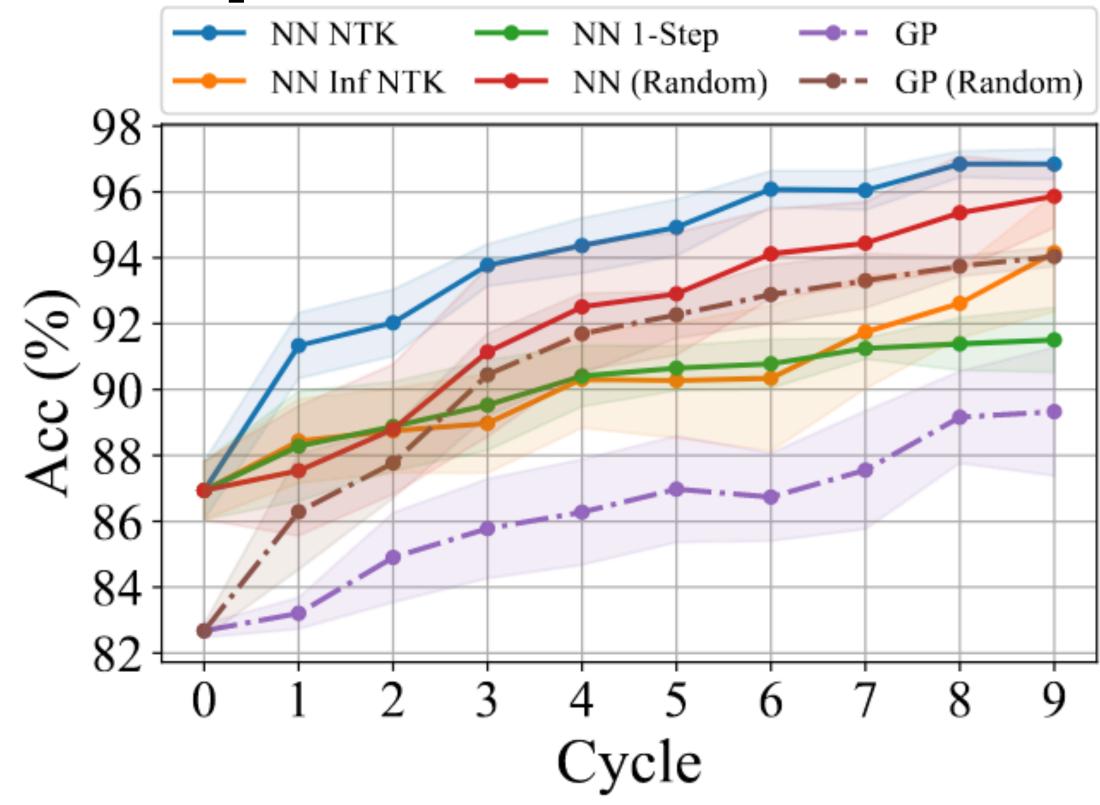
Far faster + better performance than actually retraining with the new data Much better "understanding" of retraining behaviour than infinite NTK or one



(a) Naïve look-ahead acquisition versus NTK approximation. Bars show runtime per cycle.

- step of SGD

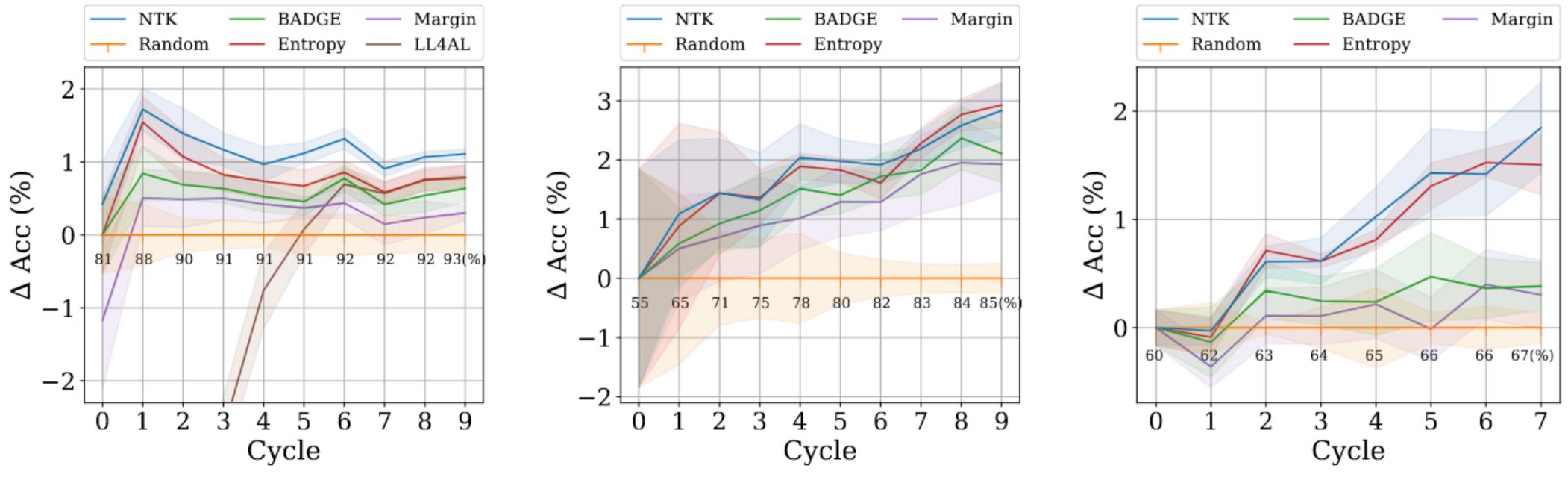
Active learning with empirical NTKs



• Far faster + better performance than actually retraining with the new data Much better "understanding" of retraining behaviour than infinite NTK or one

Active learning with empirical NTKs

Matches or beats other active learning methods



(a) SVHN: 1-layer WideResNet

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets. Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

(b) CIFAR10: 2-layer WideResNet

(c) CIFAR100: ResNet18

Predicting generalization

Pretrained ResNet-34 on CIFAR-100

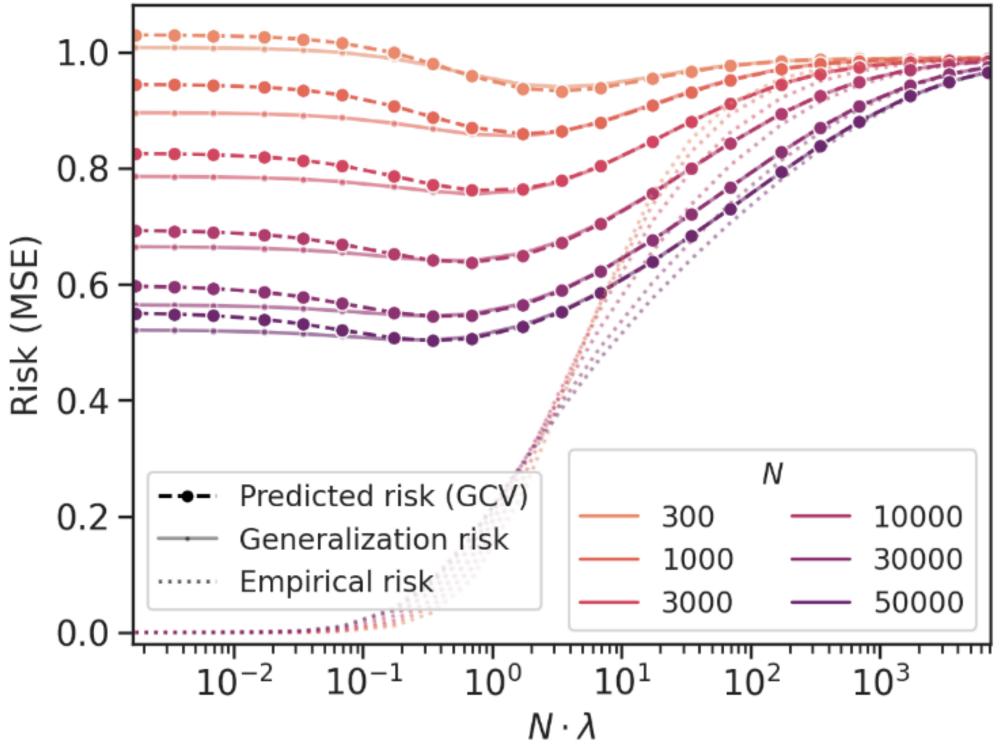


Figure 1. Predicted vs. actual generalization risk of a pretrained ResNet-34 empirical NTK on CIFAR-100 over dataset sizes N and ridge regularizations λ . Corresponding training risks are plotted in the background. The fit achieving the lowest MSE has 19.9% test error on CIFAR-100 (vs. 15.9% from finetuning the ResNet).

https://arxiv.org/abs/2203.06176

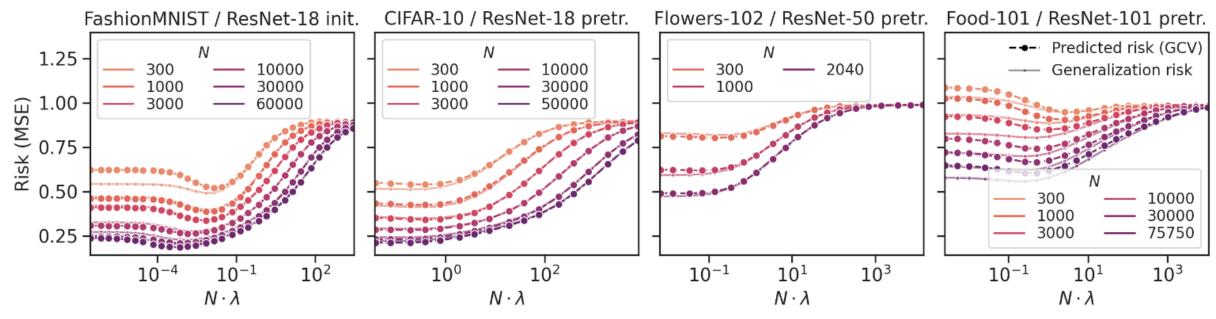


Figure 4. Generalization risk vs. the GCV prediction, for various datasets and networks, across sample sizes N and regularization levels λ .

 Uses generalized cross-validation to estimate how well a network will generalize on a new dataset after you fine-tune it

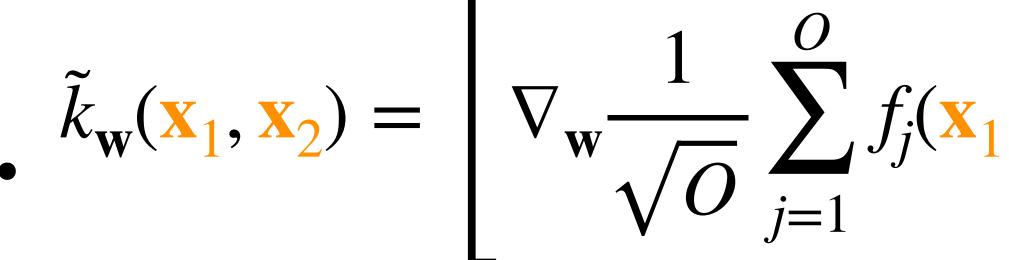
More Than a Toy: Random Matrix Models Predict How **Real-World Neural Representations Generalize**

Alexander Wei¹ Wei Hu¹ Jacob Steinhardt¹

Computing empirical NTKs

- If we have O outputs, K is $NO \times NO$
 - CIFAR-10: N = 60,000, O = 10: 2.8 terabytes in memory
 - Imagenet: $N \approx 1,200,000, O = 1000$: 11,520,000 terabytes in memory
- For the infinite NTK, we can actually ignore the O part
 - Has form $\mathbf{K} \otimes \mathbf{I}$ because of the last layer corresponds to doing an independent kernel regression for each component
 - CIFAR-10 becomes 29 gigabytes, ImageNet 11.52 terabytes
- For empirical NTK, we can get rid of the O too!

Pseudo-NTK $\tilde{k}_{\mathbf{w}}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \left| \nabla_{\mathbf{w}} \frac{1}{\sqrt{O}} \sum_{i=1}^{O} f_{i}(\mathbf{x}_{1}; \mathbf{w}) \right| \cdot \left| \nabla_{\mathbf{w}} \frac{1}{\sqrt{O}} \sum_{i=1}^{O} f_{i}(\mathbf{x}_{2}; \mathbf{w}) \right|$ • The kernel, its largest eigenvalue, and kernel regression outputs all converge to the full eNTK result at rate $\mathcal{O}(1/\sqrt{m})$ pNTK eNTK - 50min 98 -38min Acc (%) 26min . 14min 90 88 2min



A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel

Mohamad Amin Mohamadi¹ Wonho Bae¹ Danica J. Sutherland¹²

https://arxiv.org/abs/2206.12543

Figure 12: Comparison of pNTK with eNTK on a lookahead active learning task. pNTK is much faster than eNTK without losing performance.

0 1 2 3 4 5 6 7 8 9

Cycle

Pseudo-NTK: kernel approximation

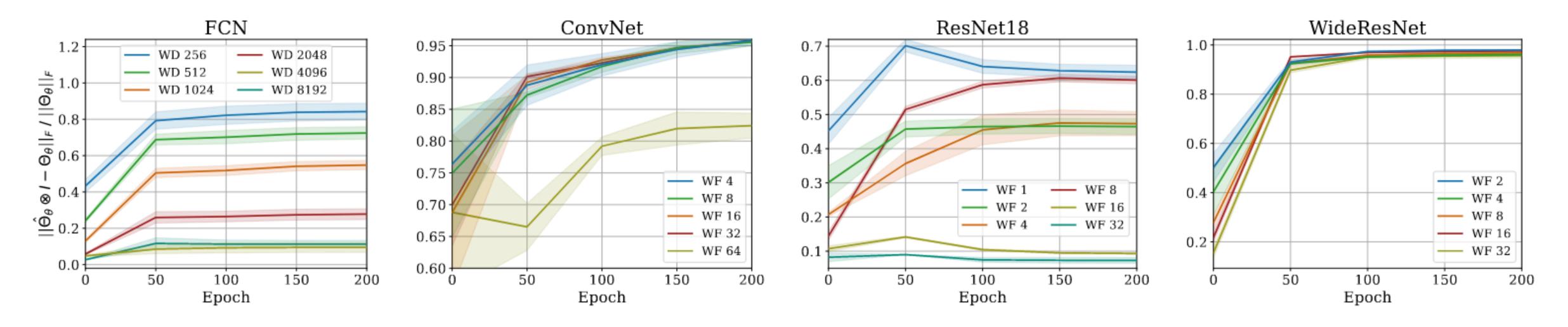
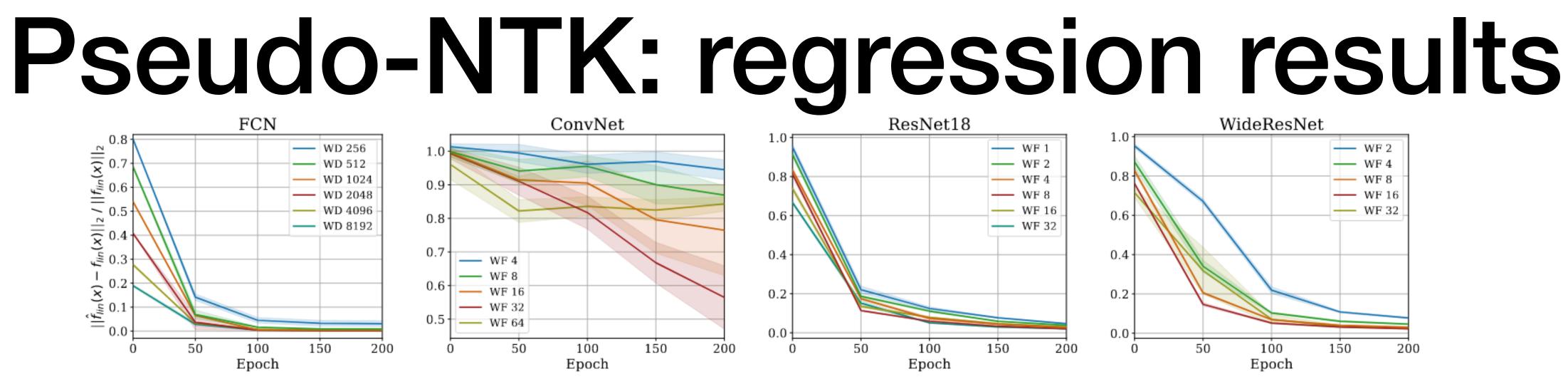


Figure 3: Evaluating the relative difference of Frobenius norm of $\Theta_{\theta}(\mathcal{D}, \mathcal{D})$ and $\hat{\Theta}_{\theta}(\mathcal{D}, \mathcal{D}) \otimes I_O$ at initialization and throughout training, based on \mathcal{D} being 1000 random points from CIFAR-10. Wider nets have more similar $\|\Theta_{\theta}\|_F$ and $\|\hat{\Theta}_{\theta} \otimes I_O\|_F$ at initialization.

ConvNet FCN



Surprisingly, the difference between these two continues to quickly vanish while training the network.

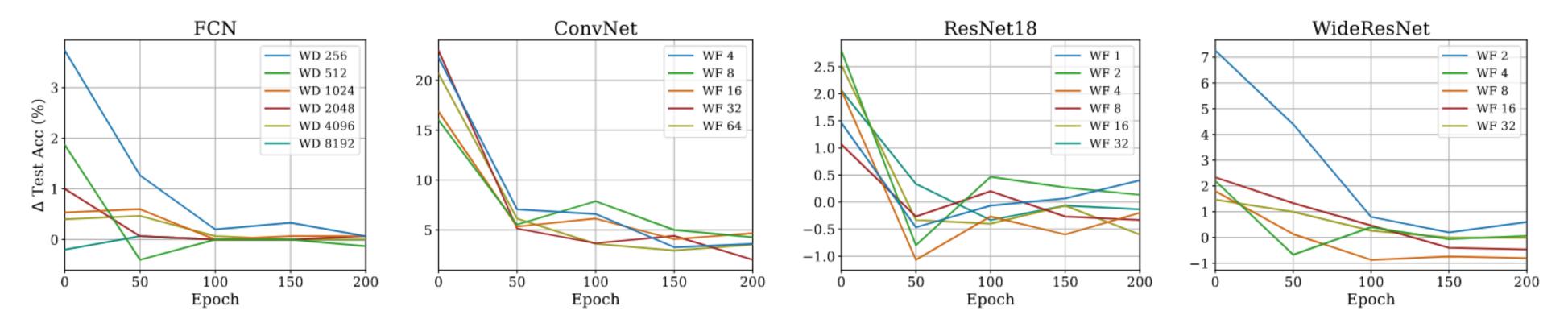


Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using eNTK. Wider NNs and trained nets have more similar prediction accuracies of \hat{f}^{lin} and f^{lin} at initialization. Again, the difference between these two continues to vanish throughout the training process using SGD.

Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on $|\mathcal{D}| = 1000$ random CIFAR-10 points and testing on $|\mathcal{X}| = 500$. For wider NNs, the relative difference in $\hat{f}^{lin}(\mathcal{X})$ and $f^{lin}(\mathcal{X})$ decreases at initialization.

Pseudo-NTK on full CIFAR-10

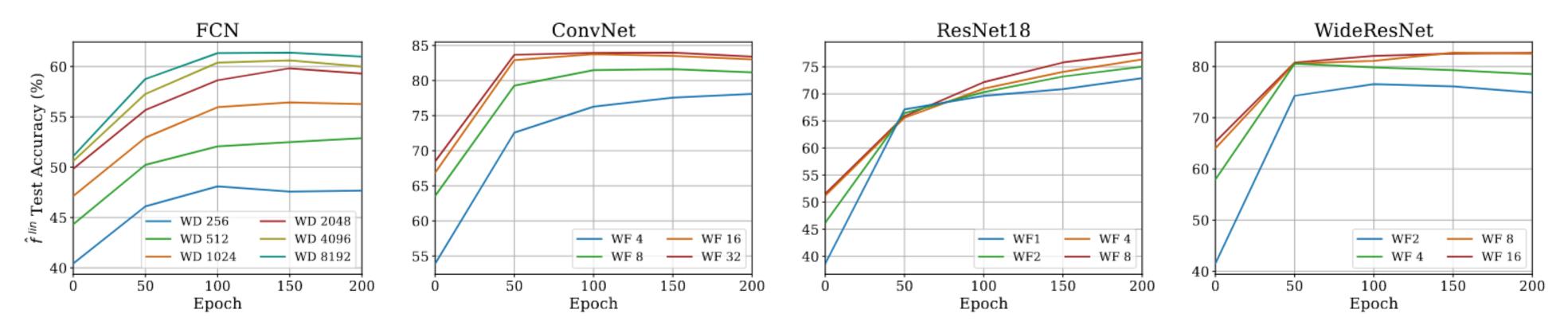


Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10 dataset. As the NN's width grows, the test accuracy of \hat{f}^{lin} also improves, but eventually saturates with the growing width. Using trained weights in computation of pNTK results in improved test accuracy of \hat{f}^{lin} .

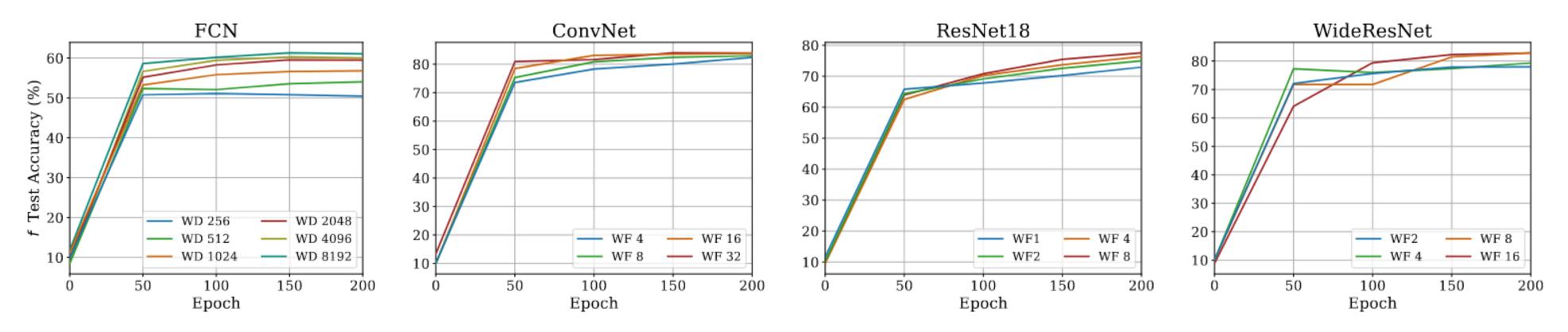


Figure 10: Evaluating the **test accuracy of model** f **throughout SGD training on the full CIFAR-10 dataset**. In contrast to \hat{f}^{lin} , the test accuracy of f does not significantly improve with growing width.

- Interesting insights, worth reading but based on NTKs from 500 samples only, since they didn't have the pNTK!
- In particular, it seems empirical NTK does meaningfully change later in the process than they were able to notice

Gintare Karolina Dziugaite^{2*} Stanislav Fort¹* Mansheej Paul¹ **Daniel M. Roy**^{3,4} Sepideh Kharaghani² Surya Ganguli¹ ¹Stanford University ²Element AI ³University of Toronto ⁴Vector Institute

Understanding learning dynamics

Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel

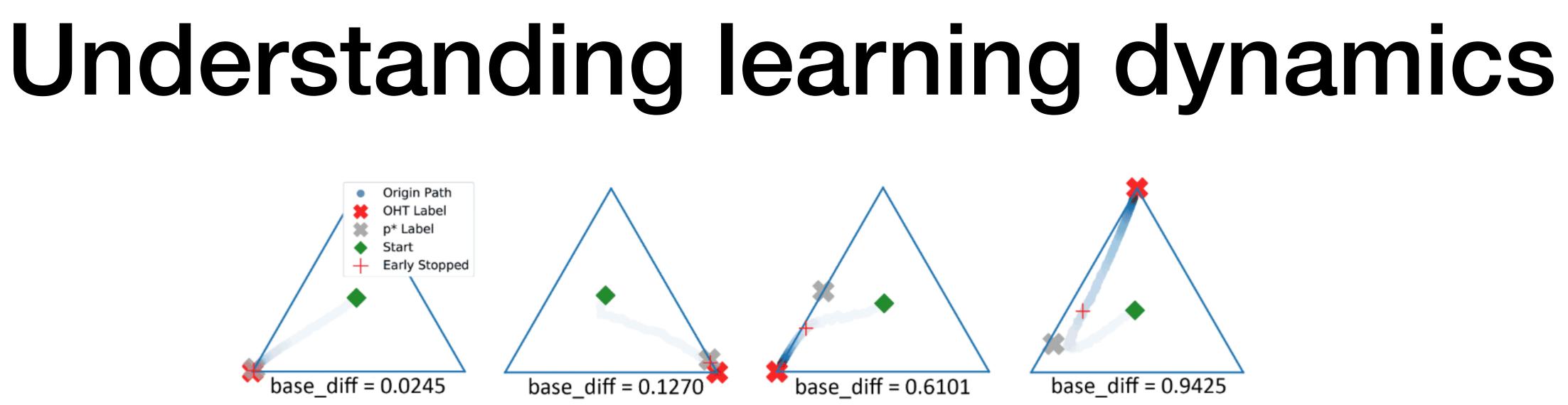
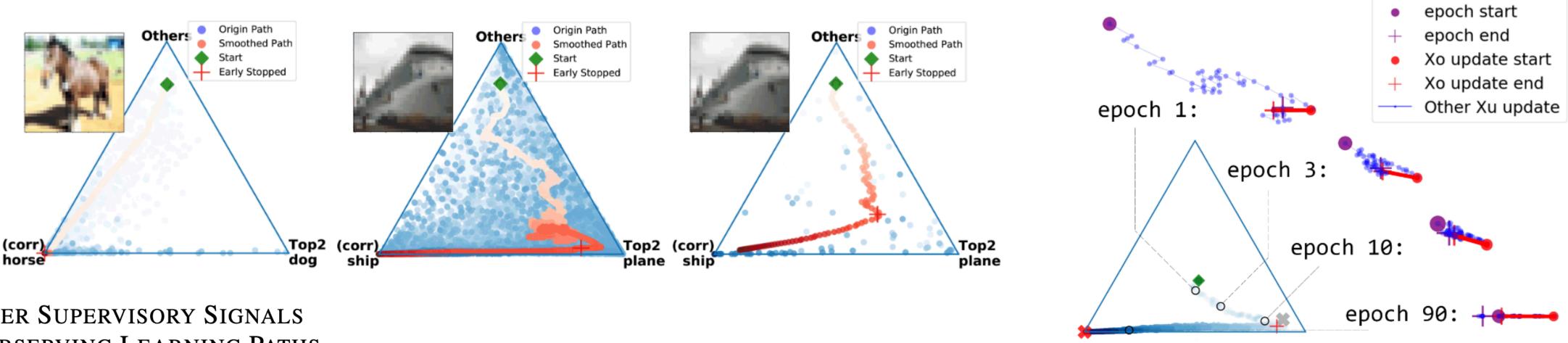


Figure 3: Learning path of samples with different base difficulty. Corners correspond to one-hot vectors. Colors represent training time: transparent at initialization, dark blue at the end of training.



BETTER SUPERVISORY SIGNALS BY OBSERVING LEARNING PATHS

Yi Ren UBC renyi.joshua@gmail.com

Shangmin Guo University of Edinburgh s.guo@ed.ac.uk

Danica J. Sutherland UBC and Amii dsuth@cs.ubc.ca

Figure 4: Updates of $\mathbf{q}(\mathbf{x}_o)$ over training.

Understanding learning dynamics

Proposition 1. Let $\mathbf{z}^t(\mathbf{x}) \triangleq f(\mathbf{w}^t, \mathbf{x})$ denote the network output logits with parameters \mathbf{w}^t , and $\mathbf{q}^t(\mathbf{x}) = \text{Softmax}(\mathbf{z}^t(\mathbf{x}))$ the probabilities. Let $\mathbf{w}^{t+1} \triangleq \mathbf{w}^t - \eta \nabla_{\mathbf{w}} \left(\mathbf{p}_{tar}(\mathbf{x}_u)^{\mathsf{T}} \mathbf{L}(\mathbf{q}^t(\mathbf{x}_u)) \right)$ be the result of applying one step of SGD to \mathbf{w}^t using the data point $(\mathbf{x}_u, \mathbf{p}_{tar}(\mathbf{x}_u))$ with learning rate η . Then the change in network predictions for a particular sample \mathbf{x}_o is

 $\mathbf{q}^{t+1}(\mathbf{x}_o) - \mathbf{q}^t(\mathbf{x}_o) = \eta \,\mathcal{A}^t(\mathbf{x}_o) \,\mathcal{K}^t(\mathbf{x}_o, \mathbf{x}_u) \,\left(\mathbf{p}_{tar}\right)$

where $\mathcal{A}^{t}(\mathbf{x}_{o}) = \nabla_{\mathbf{z}}\mathbf{q}^{t}(\mathbf{x}_{o})$ and $\mathcal{K}^{t}(\mathbf{x}_{o}, \mathbf{x}_{u}) = (\nabla_{\mathbf{w}}\mathbf{z}(\mathbf{x}_{o})|_{\mathbf{w}^{t}}) (\nabla_{\mathbf{w}}\mathbf{z}(\mathbf{x}_{u})|_{\mathbf{w}^{t}})^{\mathsf{T}}$ are $K \times K$ matrices.

$$(\mathbf{x}_{\boldsymbol{u}}) - \mathbf{q}^{t}(\mathbf{x}_{\boldsymbol{u}})) + \mathcal{O}(\eta^{2} \| \nabla_{\mathbf{w}} \mathbf{z}(\mathbf{x}_{\boldsymbol{u}}) \|_{\mathrm{op}}^{2}),$$

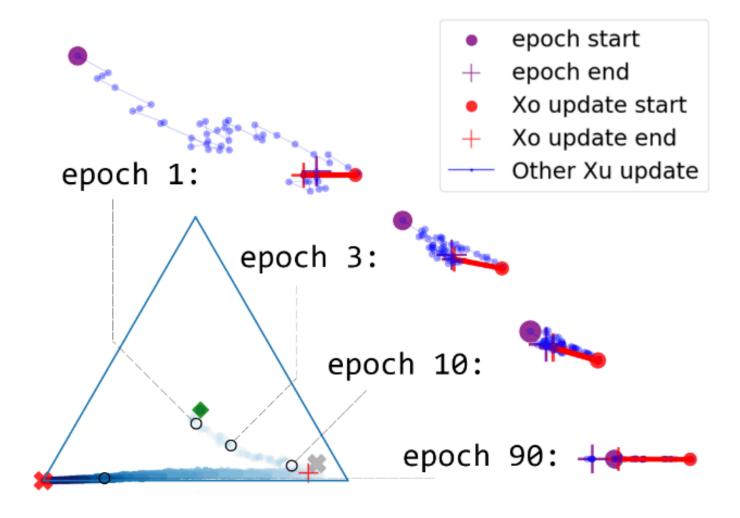


Figure 4: Updates of $\mathbf{q}(\mathbf{x}_o)$ over training.

- With essentially any architecture, using square loss, scalar outputs: in the limit as the network becomes wider,
- - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$

- With essentially any architecture, using square loss, scalar outputs: in the limit as the network becomes wider,
- - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$
 - and so as $t \to \infty$, (S)GD on the network converges to kernel regression $\hat{f}(\mathbf{x}) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,
- - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$
 - and so as $t \to \infty$, (S)GD on the network converges to kernel regression $\hat{f}(\mathbf{x}) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$ • predictions on training set: $\mathbf{K}_0 \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + \mathbf{f}_0 = \mathbf{y} - \mathbf{f}_0 + \mathbf{f}_0 = \mathbf{y}$

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,
- - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$
 - $\hat{f}(\mathbf{x}) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} (\mathbf{y} \mathbf{f}_0) + f_0(\mathbf{x})$ • predictions on training set: $\mathbf{K}_0 \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + \mathbf{f}_0 = \mathbf{y} - \mathbf{f}_0 + \mathbf{f}_0 = \mathbf{y}$
- and so as $t \to \infty$, (S)GD on the network converges to kernel regression This can't explain all of real deep learning

- With essentially any architecture, using square loss, scalar outputs: • in the limit as the network becomes wider,
- - for appropriate Gaussian-distributed **w**,
 - the NTK at initialization, k_{w_0} , converges to its mean $\mathbf{E}_{w}k_{w_0}$,
 - and during training, $f(\mathbf{x}; \mathbf{w}_t)$ stays close to the linearized training result: $f^{lin}(\mathbf{x}; \mathbf{w}_t) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} \left(\mathbf{I} - e^{-\frac{\eta t}{N} \mathbf{K}_0} \right) \left(\mathbf{y} - \mathbf{f}_0 \right) + f_0(\mathbf{x})$
 - and so as $t \to \infty$, (S)GD on the network converges to kernel regression $\hat{f}(\mathbf{x}) = \mathbf{k}_0(\mathbf{x}) \mathbf{K}_0^{-1} (\mathbf{y} - \mathbf{f}_0) + f_0(\mathbf{x})$
 - predictions on training set: $\mathbf{K}_0 \mathbf{K}_0^{-1} (\mathbf{y} \mathbf{f}_0) + \mathbf{f}_0 = \mathbf{y} \mathbf{f}_0 + \mathbf{f}_0 = \mathbf{y}$
- This can't explain all of real deep learning
- But it's a useful tool, especially local approximations with empirical NTK