(Deep) Kernel Mean Embeddings
for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/1like23

https://djsutherland.ml/
https://like23-bern.github.io/
https://djsutherland.ml/slides/like23/

(Deep) Kernel Mean Embeddings
for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/1like23

https://djsutherland.ml/
https://like23-bern.github.io/
https://djsutherland.ml/slides/like23/

(Deep) Kernel Mean Embeddings
for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/1like23

https://djsutherland.ml/
https://like23-bern.github.io/
https://djsutherland.ml/slides/like23/

(Deep) Kernel Mean Embeddings
for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/1like23

https://djsutherland.ml/
https://like23-bern.github.io/
https://djsutherland.ml/slides/like23/

Part I: Kernels

Why kernels?

e Machine learning!

Why kernels?

e Machine learning! ...but how do we actually do it?

Why kernels?

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Why kernels?

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Why kernels?

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

(X N N J -q-... GBO G GOt © G oampeee o @0 @G e

Why kernels?

e Machine learning! ...but how do we actually do it?
e Linear models! f(z) = wy + wz, §(x) = sign(f(x))

e Extend ...

flz) =w'(1,2,2%) = w' ¢(z)

Why kernels?

e Machine learning! ...but how do we actually do it?
e Linear models! f(z) = wy + wz, §(x) = sign(f(x))

e Extend ...

flz) =w'(1,2,2%) = w' ¢(z)

Why kernels?

e Machine learning! ...but how do we actually do it?
e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend ...

f(z) =w'(1,2,2%) = w' ¢(z)

Why kernels?

Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

f(z) =w'(1,2,2%) = w' ¢(z)

Kernels are basically a way to study doing this
with any, potentially very complicated, ¢

Why kernels?
Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w' (1,z,2%) = w' ¢(=)
Kernels are basically a way to study doing this

with any, potentially very complicated, ¢

Convenient way to make models on documents, graphs, videos, datasets,
probability distributions, ...

Why kernels?
Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w' (1,z,2%) = w' ¢(=)
Kernels are basically a way to study doing this

with any, potentially very complicated, ¢

Convenient way to make models on documents, graphs, videos, datasets,
probability distributions, ...

¢ will live in a reproducing kernel Hilbert space

Hilbert spaces

e A complete (real or complex) inner product space

Hilbert spaces
e A complete (real ereommptex) inner product space

Hilbert spaces

e A complete (real ereommptex) inner product space

e |nner product space: a vector space with an inner product:
" <a1f1 =+ a2f2ag>'H — <flag>7-l + a2<f2ag>7-t

. <fag>'H — <gaf>’H
. <f7f>'H >Oforf7é0' <070>'H =0

Hilbert spaces

e A complete (real erecofmptex) inner product space

e |nner product space: a vector space with an inner product:
" <a1f1 =+ a2f2ag>'H — <flag>7-l + a2<f2ag>7-t

<f1 >H_< f>’H
. <f7f>'H >Oforf7é0' <070>'H =0
Induces a norm: || ||y = /{f, f)u

Hilbert spaces
e A complete (real erecofmptex) inner product space

e |nner product space: a vector space with an inner product:
" <a1f1 =+ a2f2ag>'H — <flag>7-l + a2<f2ag>7-t

. <fag>'H — <gaf>’H
. <f7f>'H >Oforf7é0' <070>'H =0

Induces a norm: || ||y = /{f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)

Kernel: an inner product between feature maps

e Call our domain X, some set
= RY, functions, distributions of graphs of images, ...

Kernel: an inner product between feature maps

e Call our domain X, some set
= RY, functions, distributions of graphs of images, ...

e k: X x X — Risakernel on X if there exists a Hilbert space H and a
feature map ¢ : X — H so that

k(z,y) = (o(z), d(y))n

Kernel: an inner product between feature maps

e Call our domain X, some set
= RY, functions, distributions of graphs of images, ...

e k: X x X — Risakernel on X if there exists a Hilbert space H and a
feature map ¢ : X — H so that

k(z,y) = (o(z), d(y))n

e Roughly, kis a notion of “similarity” between inputs

Kernel: an inner product between feature maps

e Call our domain X, some set
= RY, functions, distributions of graphs of images, ...

e k: X x X — Risakernel on X if there exists a Hilbert space H and a
feature map ¢ : X — H so that

k(z,y) = (o(z), d(y))n

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on R%: k(z,y) = <a3,y>Rd

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

e Exactly the same: GP covariance function

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation
n kX X X — R, usually symmetric, like RKHS kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation
n kX X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation
n kX X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel
= Often requires k(x,y) > 0, unlike RKHS kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation
n kX X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel
= Often requires k(x,y) > 0, unlike RKHS kernel

= Not required to be inner product, unlike RKHS kernel

Aside: the name “kernel”

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
Exactly the same: GP covariance function
Semi-related: kernel density estimation

Unrelated:

Aside: the name “kernel”

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
Exactly the same: GP covariance function
Semi-related: kernel density estimation

Unrelated:
= The kernel (null space) of a linear map

Aside: the name “kernel”

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
Exactly the same: GP covariance function
Semi-related: kernel density estimation

Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name “kernel”

Exactly the same: GP covariance function

Semi-related: kernel density estimation

Unrelated:

ne

ne

ne

Kerne

Kerne

Kerne

(null space) of a linear map
of a probability density

of a convolution

Aside: the name “kernel”

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
Exactly the same: GP covariance function
Semi-related: kernel density estimation

Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

= The kernel of a convolution
= CUDA kernels

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name “kernel”

Exactly the same: GP covariance function

Semi-related: kernel density estimation

Unrelated:

The kernel (null space) of a linear map

The kernel of a probability density

The kernel of a convolution
CUDA kernels

The Linux kernel

Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name “kernel”

Exactly the same: GP covariance function

Semi-related: kernel density estimation

Unrelated:

The kernel (null space) of a linear map

The kernel of a probability density

The kernel of a convolution
CUDA kernels
The Linux kernel

Popcorn kernels

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %
e Sum: ki (x,y) = k1(x,y) + ko (x,y) is a kernel

Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
= ky(z,y) =v(0(2), 6(¥) 5 = (VAP(2), /TD(¥)) %

e Sum:ky(z,y) = k1(z,y) + ko (x, y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2

Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
= ky(z,y) =v(0(2), 6(¥) 5 = (VAP(2), /TD(¥)) %

e Sum:ky(z,y) = k1(z,y) + ko (x, y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2

e Iski(x,y) — k2(x,y) necessarily a kernel?

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %
e Sum: ki (x,y) = k1(x,y) + ko (x,y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2

e Iski(x,y) — k2(x,y) necessarily a kernel?
= Take k1 (x,y) =0, ka(z,y) = xy, x # 0.

» Then ki (z,z) — ko(z,z) = —2% < 0
+ Buth(z, 2) = |$(a)[3, > 0.

Positive definiteness

o Asymmetric functionk : X X X - R e k(z,y) = k(y, z)
IS positive semi-definite
ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n

S: S: a;a;k(z;,z;) >0

i=1 j=1

Positive definiteness

o Asymmetric functionk : X X X - R e k(z,y) = k(y, z)
IS positive semi-definite

ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n
S: S: a;a;k(z;,z;) >0
i=1 j=1
e Equivalent: n X n kernel matrix K is psd (eigenvalues > 0)

k(z1,21) k(zi,z2) ... k(z1,z,)]
k(xe,x1) k(xo,x2) ... k(zo,x,)

k(x,,x1) Ek(xn,x2) ... k(z,,z,)

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite

ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n
S: S: a,z-ajk(a:z-, il?j) >0
i=1 j=1
e Hilbert space kernels are psd

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite

ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n

S: S: a;a;k(z;,z;) >0

i=1 j=1
Hilbert space kernels are psd

ZZ a;p(x;) , Qj P w])>

=1 j=

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite

ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n

S: S: a;a;k(z;,z;) >0

i=1 j=1
Hilbert space kernels are psd

ZZ a;d(z;),a;0(z;)) <Z a;o(x;) Zajgb T >

=1 j=

H

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite
ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n

S: S: a;a;k(z;,z;) >0

i=1 j=1
e Hilbert space kernels are psd

ZZ a;p(x;) , Qj P w])>

=1 j=

||
—
(]
8
-

3
M-
£
-

Q&
~_—

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite
ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n

S: S: a;a;k(z;,z;) >0

i=1 j=1
e Hilbert space kernels are psd

ZZ a;p(x;) , Qj P w])>

=1 j=

||
—
(]
8
-

3
M-
£
-

Q&
~_—

Positive definiteness

o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)
IS positive semi-definite

ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n
S: S: a,z-ajk(a:z-, il?j) >0
i=1 j=1
e Hilbert space kernels are psd

Positive definiteness
o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)

IS positive semi-definite
ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n
S: S: a,z-ajk(a:z-, il?j) >0
i=1 j=1
e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this

Some more ways to build kernels

o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd

Some more ways to build kernels

o Limits: if ko (a: y) = lim,, 00 km (T, y) exists, ko is psd

o n%l_l)I;OZZazaJ (x5, 25) >0

=1 j=

Some more ways to build kernels

o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd

e Products: kyx (z,y) = k1(x, y)k2(z,y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd

e Products: kyx (z,y) = k1(x, y)k2(z,y) is psd
= LetV ~ N(0,K7), W ~ N(0, K5) be independent
+ Cov(ViW;, V;W;) = Cov(Vi, V;) Cov(Wi, W;) = ki (w, 2;)

= Covariance matrices are psd, so ky is too

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd

e Products: kyx (z,y) = k1(x, y)k2(z,y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ke(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ks(z,y) is psd
e Powers: k,(z,y) = k(x,y)" is pd for any integern > 0

CBTy

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ke(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0

xTy—l—c

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ks(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0

(xTy 1 c)n

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ke(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0

(a:Ty + c)"’, the polynomial kernel

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0

Exponents: kexp (,y) = exp(k(z,y)) is pd
+ Foep(,9) = iy oo S0 L2, 9)"

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = flz)k(z,y) f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd

£ X > R kp(z,) = F@)k(z,1)f(1) s pe
= Use the feature map ¢ — f(x)¢(x)

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = flz)k(z,y) f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = flz)k(z,y) f(y) is pd

.’L‘Ty

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = flz)k(z,y) f(y) is pd
1 1

o2

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (x,y)ke (z,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integern > 0
Exponents: kexp (,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = flz)k(z,y) f(y) is pd

1
exp (—a:Ty)

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ks(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd
o If f: X = R kg(z,y) = f(2)k(z,y)f(y) is pd

€X L €X —Z €X
p(— o glel’)exp (—2Ty) exp (— 5l

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ks(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd
o If f: X = R kg(z,y) = f(2)k(z,y)f(y) is pd

€X L €X —Z €X
p(— o glel’)exp (—2Ty) exp (— 5l

1
= exp (— 5 [llel? — 22Ty + ly]*])

Some more ways to build kernels
o Limits: if koo (2, y) = limy;, o0 km (2, y) exists, ks is psd
e Products: kx (z,y) = ki(z,y)ks(z,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd
o If f: X = R kg(z,y) = f(2)k(z,y)f(y) is pd

€X L €X —Z €X
p(— o glel’)exp (—2Ty) exp (— 5l

2
lz—yl|
2

— exp () the Gaussian kernel

20

Reproducing property

e Recall original motivating example with

X =R o(z) = (1,z,z°) € R

Reproducing property

e Recall original motivating example with

X =R o(z) = (1,z,z°) € R

Reproducing property

e Recall original motivating example with
X =R o(z) = (1,z,2%) € R?

e Kernelis k(z,y) = (¢(x), d(v))n = 1 + zy + z29?

Reproducing property

e Recall original motivating example with
X =R o(z) = (1,z,2%) € R?

e Kernelis k(z,y) = (¢(x), d(v))n = 1 + zy + z2y?
e Classifier based on linear f(:l?) = <?U, ¢(a7)>’H

Reproducing property

e Recall original motivating example with
X =R o(z) = (1,z,2%) € R?

e Kernelis k(z,y) = (¢(x), d(v))n = 1 + zy + z29?
e Classifier based on linear f(a?) = <w7 ¢($)>’H

e f(-)is the function f itself; corresponds to vector w in R*
f(x) € Ris the function evaluated at a point x

Reproducing property

e Recall original motivating example with
X =R o(z) = (1,z,z°) € R
» Kernelis k(z,y) = (¢(), d(y))u = 1 + zy + z°y’

e Classifier based on linear f(a?) = <w7 ¢($)>’H

e f(-)is the function f itself; corresponds to vector w in R*
f(x) € Ris the function evaluated at a point x

e Elements of H are functions, f : X — R

Reproducing property

e Recall original motivating example with
X =R o(z) = (1,z,z°) € R
» Kernelis k(z,y) = (¢(), d(y))u = 1 + zy + z°y’

e Classifier based on linear f(a?) = <w, ¢($)>’H

e f(-)is the function f itself; corresponds to vector w in R*
f(x) € Ris the function evaluated at a point x

e Elements of H are functions, f : X — R
 Reproducing property: f(x) = (f(-), ¢(x))y for f € H

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space, its RKHS H,
and amap ¢ : X — H where

= k(z,y) = (o(z), &(y))n

= Elements f € H are functions on X, with f(x) = (f, d(z))#

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space, its RKHS H,
and amap ¢ : X — H where

= k(z,y) = (o(2), o(y))n

= Elements f € H are functions on X, with f(x) = (f, d(z))#

e Combining the two, we sometimes write k(z, -) = ¢(x)

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space, its RKHS H,
and amap ¢ : X — H where

= k(z,y) = (o(z), &(y))n

= Elements f € H are functions on X, with f(z) = (f, ¢(x))%
e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)| < M| £l

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y,))n, = k(x,y)

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y,))n, = k(x,y)

= Take H to be completion of Hg in the metric from (-, +) 3,

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y,))n, = k(x,y)
= Take H to be completion of Hg in the metric from (-, +) 3,

= Get that the reproducing property holds for k(a:,) in H

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y,))n, = k(x,y)
= Take H to be completion of Hg in the metric from (-, +) 3,

= Get that the reproducing property holds for k(a:,) in H

= Can also show unigueness

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y,))n, = k(x,y)
= Take H to be completion of Hg in the metric from (-, +) 3,

= Get that the reproducing property holds for k(a:,) in H

= Can also show unigueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels
e k(z,y) =2 'yon X =R

A quick check: linear kernels

e k(z,y) =2 yon X =R?
» k(z,-) = [y — 'y “corresponds to”" x

A quick check: linear kernels

e k(z,y) =2 'yon X =R
» k(z,-) = [y — 'y “corresponds to”" x

° lff Zaz wzay then f() [Zz 1azwz]Ty

A quick check: linear kernels

e k(z,y) =2 yon X =R?
» k(z,-) = [y — 'y “corresponds to”" x

° lff Zaz wzay then f() [Zz 1azwz]Ty

e Closure doesn't add anything here, since R% is closed

A quick check: linear kernels

k(z,y) =z "yon X =R?
» k(z,-) = [y — 'y “corresponds to”" x

1 116) = 3 blan). v £) = [T e

Closure doesn't add anything here, since R% is closed

So, linear kernel gives you RKHS of linear functions

A quick check: linear kernels

k(z,y) =z "yon X =R?

i £(y

» k(z,-) = [y — 'y “corresponds to”" x

Zaz xzay thEﬂ f() [Zz 1a’ZwZ]Ty

Closure doesn't add anything here, since R% is closed

So,

I f]

inear kernel gives you RKHS of linear functions

"= \/Z?zl i1 aiajk(zi, i) = 1221 aizil]

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e ‘H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

o H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional

e Functions in H are bounded

f(x) = (f, k(@))n < v/E(@,)| flln = [£l

W

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

o H is infinite-dimensional
e Functionsin H are bounded

f(x) = (f, k(@))n < v/E(@,)| flln = [£l

e Choice of o controls how fast functions can vary:

f@+1) - £(2) < k(@ +1,-) — k(') 1] £l
k(2 +t,) — k(z,)5 =2 — 2z, +1) =2 — zexp('t“2)

O'

W

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional
e Functionsin H are bounded

f(x) = (f, k(@))n < v/E(@,)| flln = [£l

e Choice of o controls how fast functions can vary:

f@+1) - f(z) < k(@ +1,-) — k(') 1] £l
k(2 +t,) — k(z,)5 =2 — 2z, +1) =2 — 2exp(W)

O'

More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional
e Functions in H are bounded

f(x) = (f, k(@))n < v/E(@,)| flln = [£l

e Choice of o controls how fast functions can vary:
fl@+t) = f(z) < [[k(z+1t,) — k(@) la]| fll
2
\k(z +t,-) — k(z,)[2, = 2 — 2k(z,z + 1) =2 — 2exp(il)

O'

e Can say lots more with Fourier properties

Kernel ridge regression

f = argmin 1 Z(f(wz) —4i)* + Al £l

fen N

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fe M3
Linear kernel gives normal ridge regression:

A R) 1 n
f@)=v"2; d=argmin=) (w'z;—)+ A|w|’
weR? n 1=1

Nonlinear kernels will give nonlinear regression!

Kernel ridge regression

f = argmin 1 Z(f(wz) —4i)* + Al £l

fen N

How to find f?

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f ? Representer Theorem

Kernel ridge regression

A 1 n
f = argmin — Z(f(fcz') - yz')2 + >\||f\|3{
fer N4
How to find f? Representer Theorem

o Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H

Kernel ridge regression

" 1 n
f = argmin — Z(f(fcz') - yz')2 + >\||f\|3{
fer N4
How to find f? Representer Theorem
e Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H

e Decompose f = fx + fL with fx € Hx, fL € H |

Kernel ridge regression

n
f = argmin — 3 (f(e:) —w)? + Al I
fer N4
How to find f? Representer Theorem
o Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H
e Decompose f = fx + fL with fx € Hx, fL € H |

o f(z:) = (fx + fo,k(zi,*))n = (fx, k(zi, ")) n

Kernel ridge regression

n
f = argmin — 3 (f(e:) —w)? + Al £l
fer N4
How to find f? Representer Theorem
e Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H
e Decompose f = fx + fL with fx € Hx, fL € H |

o f(zi) = (fx + fL, k(zi,-))n = (fx, k(zi,°))n
o [|£113, = [I£x13 + I fL I3

Kernel ridge regression

f = argmin = 3 (@) —)? + Al fIE
fen N3
How to find f? Representer Theorem
e Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H
e Decompose f = fx + fiL with fx € Hx, f1 € H,
* f(@i) = (Fx + i, k(@is))n = (fx, k(@i,) n
o [1£113 = Il fx I3 + I fll%

e Minimizer needs f; = 0, and sof - Z?:l a;k(z;, -)

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

feH N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

n

i (i a;k(zi, ;) — y,) = Z ([Ka); — i)

— . i1

Kernel ridge regression

f = argmin h Z(f(xz‘) -)" + A,

fen N7

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

n

> (Z (@i, ;) - y) =) (Ko~ w)* = Ko~y

= ' =1

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

n

> (Z (@i, ;) - y) =) (Ko~ w)* = Ko~y

— . i1

=a'K?a—2y" Ka+y'y

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

n

2": (iajk(a:i,a:j) - yz) = Z([Ka]z’ — .%:)2 = |[Ka —y|?

i=1
=a'K?a—2y" Ka+y'y

Z Z a; k(z;, ;)

=1 j5=1

n

E a;k(z;,)

1=1

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

n

2": (iajk(a:i,a:j) - yz) = Z([Ka]z’ — .%:)2 = |[Ka —y|?

i=1
=a'K?a—2y" Ka+y'y

Z Zazk(mz,xj)a] =a'

=1 j5=1

n

E a;k(z;,)

1=1

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

& =argmina' K?a—2y" Ka+y'y+ nla' Ka

acR"

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

& =argmina' K?a—2y" Ka+y'y+ nla' Ka
acR"”
— argmina' K(K 4+ n\)a —2y' Ko

acR"

Kernel ridge regression

f = argmin 1 Z(f(wz) —)" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

& =argmina' K?a—2y" Ka+y'y+ nla' Ka

acR"

— argmina' K(K 4+ n\)a —2y' Ko

acR"

Setting derivative to zero gives K (K 4+ nAl)a = Ky,
satisfied by & = (K + nAI) 1y

Kernel ridge regression and GP regression

e Compare to regression with GP(0, k) prior, N (0, 02) observation noise

Kernel ridge regression and GP regression
e Compare to regression with GP(0, k) prior, N'(0, 0?) observation noise

o If we take A = o? /m, KRR is exactly the GP regression posterior mean

Kernel ridge regression and GP regression
e Compare to regression with GP(0, k) prior, N'(0, 0?) observation noise

o If we take A\ = o? /m, KRR is exactly the GP regression posterior mean

e Note that GP posterior samples are not in H, but are in a slightly bigger RKHS

Kernel ridge regression and GP regression
Compare to regression with GP(0, k) prior, N (0, 02) observation noise
If we take A = o /m, KRR is exactly the GP regression posterior mean

Note that GP posterior samples are not in H, but are in a slightly bigger RKHS

Also a connection between posterior variance and KRR worst-case error

Kernel ridge regression and GP regression
Compare to regression with GP(0, k) prior, N'(0, o) observation noise

If we take A = o /m, KRR is exactly the GP regression posterior mean

Note that GP posterior samples are not in H, but are in a slightly bigger RKHS
Also a connection between posterior variance and KRR worst-case error
For many more details:

Gaussian Processes and Kernel Methods:
A Review on Connections and Equivalences

Motonobu Kanagawa!, Philipp Hennig!,

Dino Sejdinovic?, and Bharath K Sriperumbudur?

https://arxiv.org/abs/1807.02582

Other kernel algorithms

e Representer theorem applies if R is strictly increasing in

min L(f(z1), -+, f(zn)) + R(|| flln)

feH

e Kernel methods can then train based on kernel matrix &

Other kernel algorithms

e Representer theorem applies if R is strictly increasing in

min L(f(z1), -+, f(zn)) + R(|| flln)

feH

e Kernel methods can then train based on kernel matrix &

e (Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss

Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(x1),---, f(zn)) + R(|| fll2)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss

Principal component analysis, canonical correlation analysis

Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(z1), -+, f(zn)) + R(|| flln)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis

Many, many more...

Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(z1), -+, f(zn)) + R(|| flln)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis
Many, many more...

But not everything works...e.g. Lasso ||w||1 regularizer

Some very very quick theory

e Generalization: how close is my training set error to the population error?

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
» Rademacher argument implies expected overfitting < %

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
= Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

2pB

= Rademacher argument implies expected overfitting < 7

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
= Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?
= For universal kernels, can approximate any target with finite norm

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
» Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?
= For universal kernels, can approximate any target with finite norm

= Gaussian is universal L

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
= Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?
= For universal kernels, can approximate any target with finite norm

= Gaussian is universal L. (nothing finite-dimensional can be)

Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
= Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?
= For universal kernels, can approximate any target with finite norm

= Gaussian is universal L. (nothing finite-dimensional can be)

= But “finite” can be really really really big

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3y — Bxy7 for large d

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3y — D17 for large d

e Provably statistically slower than deep learning for a few problems
= e.g. to learn a single ReLU, max (0, wTa:), need norm exponential in d
[Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3y — Bxy7 for large d

e Provably statistically slower than deep learning for a few problems
= e.g. to learn a single ReLU, max (0, ’wTa:), need norm exponential in d
[Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

= Generally apply to learning with any fixed kernel

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3y — Bxy7 for large d

e Provably statistically slower than deep learning for a few problems
= e.g. to learn a single ReLU, max (0, ’wTa:), need norm exponential in d
[Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

= Generally apply to learning with any fixed kernel

e O(n?) computational complexity, O(n?) memory
= Various approximations you can make

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Part II: (Deep) Kernel Mean Embeddings

Mean embeddings of distributions
e Representpointz € X as k(z,-): f(x) = (f, k(z,))n

Mean embeddings of distributions
e Representpointx € X as k(xz,-): f(x) = (f, k(z,-))u
o Represent distribution P as pup: Ex.p f(X) = (f, up)n

Mean embeddings of distributions
e Representpointx € X as k(xz,-): f(x) = (f, k(z,))n
o Represent distribution P as pup: Ex.p f(X) = (f, up)n

Exp f(X) = Ex.p <f7 k(Xa)>H

Mean embeddings of distributions
e Representpointz € X as k(z,-): f(x) = (f, k(z,-))xn
e Represent distribution P as pup: Exop f(X) = (f, up)n
IE‘:'XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>H — <f7 EXNIP’ k(X7)>7—t

N ——’
Hp

Mean embeddings of distributions
e Representpointz € X as k(z,-): f(x) = (f, k(z,)
e Represent distribution P as pup: Exwp f(X) = (f, up)n
IE‘:'XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>'H — <f7 IE‘:XNIP’ k(X7)>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)

Mean embeddings of distributions
e Representpointz € X as k(z,-): f(x) = (f, k(z,)
e Represent distribution P as up: Exop f(X) = (f, up)n
IE‘:XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>H — <f7 EXNIP’ k(X7)>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)
° </JJIP>7 >'H :EXN]P’, ~ k(Xa)

Mean embeddings of distributions
Represent pointz € X as k(z,-): f(x) = (f, k(x,-))xn
Represent distribution P as up: Exp f(X) = (f, up)x
IE‘:XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>H — <f7 EXNIP’ k(X7)>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)

</JJIP>7 >'H :EXN]P’, ~ k(Xa)
Okay. Why?

Mean embeddings of distributions
Represent pointz € X as k(z,-): f(x) = (f, k(x,-))xn
Represent distribution P as up: Exp f(X) = (f, up)x
IE‘:XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>'H — <f7 EXNIP’ k(X7)>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)

(e s 10)n = Exop,yan B(X, V)

Okay. Why?
= One reason: ML on distributions [Szabd+ JMLR-16]

https://arxiv.org/abs/1411.2066

Mean embeddings of distributions
Represent pointz € X as k(z,-): f(x) = (f, k(x,-))xn
Represent distribution P as up: Exp f(X) = (f, up)x
IE‘:XNIP’ f(X) —]EXN]P’ <f7 k(Xa)>'H — <f7 EXNIP’ k(X7)>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)

(e s 10)n = Exopyan kX, V)

Okay. Why?
= One reason: ML on distributions [Szabd+ JMLR-16]

= More common reason: comparing distributions

https://arxiv.org/abs/1411.2066

Maximum Mean Discrepancy

MMD(P, Q) = [|pp — 1ol

Maximum Mean Discrepancy

MMD(P, Q) = [|pp — 1ol

= sup (f,ur — Lo)n
[£ll4 <1

Maximum Mean Discrepancy

MMD(P, Q) = [|pp — 1ol

= sup (f,ur — Lo)n
[£ll4 <1

— Hfsnug1 Exp f(X) — Eyo f(Y)

e Lastline is Integral Probability Metric (IPM) form

Maximum Mean Discrepancy

MMD(P, Q) = [|pp — 1ol

= sup (f,ur — Lo)n
[£ll4 <1

— Hfsnug1 Exp f(X) — Eyo f(Y)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on

f* (t) X <:U’IP’ - 7k(t7)>7'l = [Ep k(ta X) — K k(ta Y)

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1ol

= sup (f,up — 10)n
[£ll4 <1

= o Exer &)~ Fra fY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

HT | T— 1

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1ol

= sup (f,up — 10)n
[£ll4 <1

= o Exer &)~ Fra fY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1o |l

= sup (f,up — 1L0)n
[£ll4 <1

= Exer &)~ Fra fY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

-
/’~I
= e

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1o |l

= sup (f,up — 1L0)n
[£ll4 <1

= Exer &)~ Fra fY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f (t) (e — o, k(t,))n = Ep k(t, X) — Eq k(2,Y)

______ JRAEDN

~———-~~~
~~—

s._/

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1ol

= sup (f,up — 10)n
[£ll4 <1

= o Exer &)~ Fra fY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1ol

= sup (f,up — 10)n
[£ll4 <1

= o Exer &)~ Fra fY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1o |l

= sup (f,up — 1L0)n
[£ll4 <1

= Exer &)~ Fra fY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)

f(t) o< (up — o, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = ||pp — 1o |l

= sup (f,up — 1L0)n
[£ll4 <1

= Exer &)~ Fra fY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on [P, low on)
f7(8) oc {pp — 1o, k(t,+))n = Ep k(t, X) — Eq k(t,Y)

P /N

MMD properties
MMD(P, Q) = [[up — rolln

o« MMD(IP, P) = 0, symmetry, triangle inequality

MMD properties
MMD(P, Q) = [[up — polln

o« MMD(IP, P) = 0, symmetry, triangle inequality

e If kis characteristic, then MMD(IP, Q) = 0 iff P =
n j.e. P — up isinjective

MMD properties
MMD(P, Q) = [[up — rolln

o« MMD(IP, P) = 0, symmetry, triangle inequality

e If kis characteristic, then MMD(IP, Q) = Qiff P =
» ji.e. P — up isinjective

= Makes MMD a metric on probability distributions

MMD properties
MMD(P, Q) = [[up — rolln

o« MMD(IP, P) = 0, symmetry, triangle inequality

e If kis characteristic, then MMD(IP, Q) = Qiff P =
» ji.e. P — up isinjective

= Makes MMD a metric on probability distributions

s Universal — characteristic

MMD properties
MMD(P, Q) = [[up — rolln

o« MMD(IP, P) = 0, symmetry, triangle inequality

e If kis characteristic, then MMD(IP, Q) = 0 iff P =
» ji.e. P — up isinjective
= Makes MMD a metric on probability distributions
= Universal = characteristic

e |f we use a linear kernel:
= MMD(P, Q) = ||up — 1o ||% just Euclidean distance between means

MMD properties
MMD(P, Q) = [[up — polln

MMD(P, P) = 0, symmetry, triangle inequality

If k is characteristic, then MMD(IP, Q) = 0 iff P =
n j.e. P — up isinjective
= Makes MMD a metric on probability distributions
= Universal = characteristic

If we use a linear kernel:
= MMD(P, Q) = ||up — 1o ||% just Euclidean distance between means

If we use k(x,y) = d(x,0) + d(y,0) — d(z,y),

the squared MMD becomes the energy distance [Sejdinovic+ Annals-13]

https://arxiv.org/abs/1207.6076

Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ % > J(Yj) forall f

Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ %ZJ f(Y;) forall f
s Letting) = %Zle dy., want {(f, no)y =~ (f, up)3 forall f € H

Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ %ZJ f(Y;) forall f
s Letting) = %Zle dy., want {(f, no)y =~ (f, up)3 forall f € H
= Error < || f|lx MMD(PP, Q)

Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ %ZJ f(Y;) forall f
= Letting) = %Zle Oy, want {(f, no)y =~ (f, up)3 forall f € H
= Error < || f|lg MMD(P, Q)
e Greedily minimize the MMD:

T
c argminE_p k(Y, X') yk(, V)
¥ T+14%

J

Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ %ZJ f(Y;) forall f
s Letting) = %Zle Oy, want {(f, no)u =~ (f, up)3 forall f € H
= Error < || f|lx MMD(P, Q)
e Greedily minimize the MMD:

T
c argminEy_p k(Y, X') yk(, V)
¥ T+1%

J

e Get O(1/T) approximation instead of O(1/+/T) with random samples

orall f
| f)# forall f € H

e Want a "super-{ .|

n Letting ()

= Error < ||| °

e Greedily minim| _,|

Yri €

k(YY)

e Get O(1/T) a

ndom samples

Figure 1: First 20 samples form herding (red squares) ver-
sus i.i.d. random sampling (purple circles).

Estimating MMD from samples

MMD%(]P’,) = (up, pp)n — 2{up, Lo)n + (Lo, 1Lo)x

Estimating MMD from samples

MMD (P, Q) = (up, wp)n — 2{up, po)n + (10, Lo)u
— IEX,X'NIP’ [k(Xa X,) — 2k(Xa Y) -+ k(Y7 Y,)]
Y,V ~Q

Estimating MMD from samples

MMDg (P, Q) = (up, e)n — 2(up, to)n + (10 Lo)u
— IEX,X'NIP’ [k(Xa X,) — 2k(Xa Y) + k(Y7 Y,)]
Y,V ~Q

— 2
MMD,,(X,Y) = mean(K xx) + mean(Kyy) — 2mean(K xy)

Estimating MMD from samples

MMD%(]P’,) = (up, pp)n — 2{up, Lo)n + (Lo, 1Lo)x
=F x xop [K(X, X") — 2k(X, V) + k(V, V)]

~J
Y

— 2
MMD, (X,Y) = mean(K xx) + mean(Kyy) — 2mean(K xy)

Kxx

sm 1.0

Estimating MMD from samples

MMD%(]P’,) = (up, pp)n — 2{up, Lo)n + (Lo, 1Lo)x
=F x xop [K(X, X") — 2k(X, V) + k(V, V)]

~J
Y

— 2
MMD, (X,Y) = mean(K xx) + mean(Kyy) — 2mean(K xy)

K
. 02 1.0
102 B -3 10
0 Ol 1.0 1.0

Estimating MMD from samples

MMD%(]P’,) = (up, pp)n — 2{up, Lo)n + (Lo, 1Lo)x
=F x xop [K(X, X") — 2k(X, V) + k(V, V)]

~J
Y

MMD, (X,Y) = mean(K xx) + mean(Kyy) — 2mean (K xy)

--IYY 1.0
& 1.0 H0

MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € [1, 2], but noisier

MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € [1, 2], but noisier

e For bounded kernel, O,(1/4/n) estimation error

MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € [1, 2], but noisier

e For bounded kernel, O,(1/4/n) estimation error
= Independent of data dimension!

MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € (1, 2], but noisier

e For bounded kernel, O,(1/4/n) estimation error
= |[ndependent of data dimension!

= But, no free lunch...the value of the MMD generally shrinks with growing
dimension, so constant O, (1/4/n) error gets worse relatively

MMD vs other distances

° MMD haS s\ {/){,Y,Z\ actimator

m plock or ir

e For boundec
= |ndepend

s But, no fr
dimensio

\o‘eg'a‘ prob. met"iq,

wasserstein Hellinger

KL

o (52}

Pearson chi?®

-D'H(P'.'Q)
= sup [Ex.pg(X) — Ey.qg(Y)
geEH

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

_divergen

isier

lgrowing

GP view of MMD

2
MMD? (P, Q) = (f.SfU-P<1EX~IP’ f(X) — Ey~o f())

— Varngp(o,k) [EXN]P’ f(X) o EY” f()]

GP view of MMD

2
MMD? (P, Q) = (f.SfU-P<1EX~IP’ f(X) — Ey~o f())

— Varngp(o,k) [EXN]P’ f(X) o EY” f()]

e Optimizing the gap in H <> average-case gap sampled from GP

GP view of MMD

2
MMD? (P, Q) = (f.SfU-P<1EX~IP’ f(X) — Ey~o f())

— Varngp(o,k) [EXNIP’ f(X) o EY” f()]

e Optimizing the gap in H <> average-case gap sampled from GP

e Six-line proof [Kanagawa+ 18, Proposition 6.1]

https://arxiv.org/abs/1807.02582

Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is P = ()?

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

e Do smokers/non-smokers get different cancers?

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

e Do smokers/non-smokers get different cancers?

e Do Brits have the same friend network types as Americans?

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

e Do smokers/non-smokers get different cancers?
e Do Brits have the same friend network types as Americans?

e When does my laser agree with the one on Mars?

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

Do smokers/non-smokers get different cancers?
Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?

Does presence of this protein affect DNA binding? [Mvpiff2]

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]

Do these dob and birthday columns mean the same thing?

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html

Application: Two-sample testing

e Given samples from two unknown distributions

i m——

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]
Do these dob and birthday columns mean the same thing?

Does my generative model match Pg.:5?

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html

Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is P = ()?

Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is P = ()?

e Hypothesis testing approach:

H():IP): Hlip#

Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is P = ()?

e Hypothesis testing approach:

H():IP): Hlip#

e Reject H ifM/l\ﬁ)(X,) > cq

probability density

What's a hypothesis test again?

0.0 0.1 0.2 0.3 0.4 0.5

probability density

What's a hypothesis test again?

0.0 0.1 0.2 0.3 0.4 0.5

What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

0.0 0.1 0.2 0.3 0.4 0.5

don't reject Hy Cq4

probability density

What's a hypothesis test again?

reject Hy (say P#Q)

—_— P=0
— PZ0

false rejection rate: want = «

0.1

0.2 0.3 0.4
MMD(X, Y)

0.5

What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

—_— P=0
— P#Q

false rejection rate: want =«

power: true rejection rate

0.1 0.2 0.3 0.4 0.5
MMD(X,Y)

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

—_— 2 d
e Hi:\/n(MMD — MMD?) — asymptotically normal

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

—_— 2 d
e Hi:\/n(MMD — MMD?) — asymptotically normal

e Any characteristic kernel gives consistent test

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

—_— 2 d
e Hi:\/n(MMD — MMD?) — asymptotically normal

e Any characteristic kernel gives consistent test...eventually

MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

e« Hi: /n(MMD — MMD#) — asymptotically normal
e Any characteristic kernel gives consistent test...eventually

e Need enormous n if kernel is bad for problem

Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

o T'(X,V)is the accuracy of f on the test set

A

e Under Hy, classification impossible: T' ~ Binomial(n, %)

Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

o T'(X,V)is the accuracy of f on the test set

e Under Hy, classification impossible: T' ~ Binomial(n, l)

« With K(z,) = 1 f(2) f(4) where f(z) € {~1,1},

get MMD(X, V) = |F(X, V) —

Deep learning and deep kernels

e k(x,y) = %f(:z:)f(y) is one form of deep kernel

Deep learning and deep kernels

e k(x,y) = %f(:z:)f(y) is one form of deep kernel

e Deep models are usually of the form f(z) = w' ¢, ()
= With a learned ¢, (z) : X — RP

Deep learning and deep kernels

e k(x,y) = %f(:z:)f(y) is one form of deep kernel

e Deep models are usually of the form f(z) = w' ¢, ()
« With a learned ¢, (z) : X — RP

o If we fix 1), have f € H, with ky, (z,y) = ®y (-’13)T¢¢ (v)

Deep learning and deep kernels

e k(x,y) = %f(:z:)f(y) is one form of deep kernel

e Deep models are usually of the form f(z) = w' ¢, ()
« With a learned ¢, (z) : X — RP

o If we fix 1, have f € Hy with ky (z,9) = ¢y (x) T by (v)
= Same idea as NNGP approximation

Deep learning and deep kernels

k(z,y) = %f(:z:)f(y) is one form of deep kernel

Deep models are usually of the form f(z) = w' ¢, (z)
= With a learned ¢, (z) : X — RP

If we fix 1, have f € Hy with ky (z,9) = ¢y (x) T dy (y)
= Same idea as NNGP approximation

Generalize to a deep kernel:

ky(z,y) = k(Py(x), Dy (v))

Normal deep learning C deep kernels

» Take ky(z,y) = + fu(z)fs (y)
e Final function in ’Hw will be af¢ (:13)

Normal deep learning C deep kernels

+ Take oy (2,8) = L £, (2) fu () + 1
e Final function in H,, will be afy(z) + b

Normal deep learning C deep kernels

o Take ky(x,y) = 3 f4(2)fs(y) + 1
e Final function in ’Hw will be af¢ (:13) + b

e With logistic loss: this is Platt scaling

Normal deep learning C deep kernels

o Take ky(x,y) = 3 f4(2)fs(y) + 1
e Final function in ’Hw will be af¢ (:13) + b

e With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo ™! Geoff Pleiss”' YuSun™' Kilian Q. Weinberger '

“Normal deep learning C deep kernels” — so?

e This does not say that deep learning is (even approximately) a kernel method

“Normal deep learning C deep kernels” — so?

e This does not say that deep learning is (even approximately) a kernel method

e ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]

Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

https://arxiv.org/abs/2012.00152

“Normal deep learning C deep kernels” — so?

e This does not say that deep learning is (even approximately) a kernel method

e ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]

Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

e We know theoretically deep learning can learn some things faster than any
kernel method [see Malach+ ICML-21 + refs]

https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210

“Normal deep learning C deep kernels” — so?

This does not say that deep learning is (even approximately) a kernel method

...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

We know theoretically deep learning can learn some things faster than any
kernel method [see Malach+ ICML-21 + refs]

But deep kernel learning # traditional kernel models
= exactly like how usual deep learning # linear models

https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210

Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

2 n MMD?
Pr (nMMD S ca) o V" Co
Hl o-Hl \/7_7;0'H1

MMD, o, , ¢, are constants: first term usually dominates

Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

2 n MMD?
Pr (nMMD S ca) o Y" Co
Hy O H, \/7_7’0'H1

MMD, og, , ¢y are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /O'H1

Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

9 n MMD?
Pr (nMMD S ca) ~ & (*/_ Co)

Hy o-Hl \/7_7;0'H1

MMD, o, , ¢, are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /O'H1

— e

e Use MMD from before, get 05, from U-statistic theory

Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

9 n MMD?
Pr (nMMD S ca) ~ & (*/_ Co)

Hy o-Hl \/7_7;0'H1

MMD, o, , ¢, are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /O'H1

— e

e Use MMD from before, get 05, from U-statistic theory

1
e Can show uniform Op(n 3) convergence of estimator

Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

5 (\/HMMDz c,)

—— 2
Pr (’nMMD > Ca) ~
Hy O H, \/7_7’0'H1

MMD, og, , ¢y are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /UHl

— e

e Use MMD from before, get 65, from U-statistic theory

1
e Can show uniform Op(n 3) convergence of estimator

e (et better tests (even after data splitting)

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q)7) on a minibatch

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q)7) on a minibatch
e MMD GAN: miny [max,;, MMD,, (P, Q)]

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q)7) on a minibatch
e MMD GAN: miny [max,;, MMD,, (P, Q)]

¢ SMMD GAN: miny [max,;, SMMD,, (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss for
by making witness function smooth [Arbel+ NeurIPS-18]

https://arxiv.org/abs/1805.11565

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q)7) on a minibatch
e MMD GAN: miny [max,;, MMD,, (P, Q)]

¢ SMMD GAN: miny [max,;, SMMD,, (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss for
by making witness function smooth [Arbel+ NeurIPS-18]

= Uses (f, Oz, k(z,-))n = O, f(z)

https://arxiv.org/abs/1805.11565

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q7) on a minibatch
e MMD GAN: miny [max,;, MMD,, (P, Q)]

¢ SMMD GAN: miny [max,;, SMMD,, (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss for
by making witness function smooth [Arbel+ NeurIPS-18]

. Uses (f, O, k(z,)3 = Or, f(z)
= Standard WGAN-GP better thought of in kernel framework

https://arxiv.org/abs/1805.11565

Application: fair representation learning (MMD-B-FAIR)
[Deka/Sutherland AISTATS-23]

e Want to find a representation where
= We can tell whether an applicant is “creditworthy”

= We can't distinguish applicants by race

https://arxiv.org/abs/2211.07907

Application: fair representation learning (MMD-B-FAIR)
[Deka/Sutherland AISTATS-23]

e Want to find a representation where
= We can tell whether an applicant is “creditworthy”

= We can't distinguish applicants by race

e Find a good classifier with near-zero test power for race

https://arxiv.org/abs/2211.07907

Application: fair representation learning (MMD-B-FAIR)
[Deka/Sutherland AISTATS-23]

e Want to find a representation where
= We can tell whether an applicant is “creditworthy”

= We can't distinguish applicants by race
e Find a good classifier with near-zero test power for race

e Minimizing the test power criterion turns out to be hard
= Workaround: minimize test power of a (theoretical) block test

https://arxiv.org/abs/2211.07907

Application: distribution regression/classification/...

e We can define a kernel on distributions by, e.g.,

1

202

k(P,):exp(MMD? (P,))

e Some pointers:
[Muandet+ NeurlPS-12] [Sutherland 2016] [Szabd+ JMLR-16]

https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066

Applicms'tribuﬁon"—'—"—"' .

L) °
observed sample label h|'t|or1/.“
ﬁ”% «%Z’ %; : 9 components

“seaside city”

and more...
Mass 7 x 101* Mg

Ntampaka et al. (ApJ 2015, 2016)
n S no Cs137 present
§ inetal (Nss 2016) “ =C J W

ol [+ |-Jo 1 county voted] 6]
SR mEe 54% for Obama .
Flaxman et al. (KDD 2015)

https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

https://arxiv.org/abs/1705.04293

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

— 35

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

— 35

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

e | CNN
IMDDb da 4y 10.0 borities
=
v __BLR
9.5

‘|Ehrinkage RBF network

3.6 3.7 3.8
NLL

https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g

Independence
o XYV iff Cov(f(X),g(Y)) = 0for all square-integrable f, g
e Let'simplement for RKHS functions f € H,, g €

E[f(X)] Elg(Y)]

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

ELf(X)]Elg(Y)] = (f, tp)3, (h0» 93,

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

E[f(X)]E[g(Y)] = (f, up)2, (10, 9)2,
= (f, (Lp ® 10)9)u,

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

ELf(X)]Elg(Y)] = (f, tp)3, (h0» 93,

= (f, (Lp ® 10)9)u,
E[f(X)g(Y)]

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

E[f(X)] Elg(Y)] =

) l’l']P)>H£U <I'LQ Y g>Hy

(
< 9 (,UJIP’ X NQ)Q>’H$

E[f(X)g(¥)]

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

E[f(X)] Elg(Y)] =

) l’l']P)>H£U <H'Q Y g>7'[y

(
(f, (up ® u@)Q)
= ([,

[()®ky(Y,-)]g>m

E[f(X)g(¥)]

Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

E[f(X)] Elg(Y)] =

7:U'IP’> <HQ79>'H3/
, (up ® #@)g>

(
=
= (/,
(

E[f(X)g(¥)]

[()®’<y(Y,)] 92t
7CXYg>

Cov(f(X),9(Y)) =

where Cxy : H, — H, is

Elk, (X,-) ® ky (V)] = Elke (X,)] @ El&, (V)]

Cross-covariance operator and independence

e Cov(f(X),q(Y))=(f,Cxva)u,
o Cxy = El[k,(X,-) ® ky(V,")] — pup ®

Cross-covariance operator and independence
* Cov(f(X),9(Y)) =}, Cxv 9,

» Cxv = Elks (X,-) ® by (Y, 7)) — pr @ 1o

e If XY, thenCxy =0

Cross-covariance operator and independence

» Cov(f(X),9(Y)) =(f,Cxv),
o Cxy =E[k(X,) @ ky (V)] — pp ® gy
e f X1LY,thenCxy =0

e If Cxry = 0, Cov(f(X),9(Y)) =0 VfEHa g€,

Cross-covariance operator and independence

Cov(f(X),9(Y)) = ([, Cxva)n,

Cxv =Elk (X,) ® by (Y,)] — pp @ 1o

If X1Y,thenCxy =0

f Cxy =0, Cov(f(X),9(Y))=0 VfeH,,g€EH,

If k., k, are characteristic:
» Cxy = 0implies X_1LY [Szabd/Sriperumbudur JMLR-18]

https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence

Cov(f(X),9(Y)) = ([, Cxva)n,

Cxv =Elk (X,) ® by (Y,)] — pp @ 1o

If X1Y,thenCxy =0

f Cxy =0, Cov(f(X),9(Y))=0 VfeH,,gEH,

If k., k, are characteristic:
» Cxy = 0implies X_1LY [Szabé/Sriperumbudur JMLR-18]

» XY iffCxy =0

https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence

» Cov(f(X),9(Y)) = (f, Cxv 9)n,

» Cxv = Elks (X,-) ® by (Y, 7)) — pr @ 1o

e If XUY,thenCxy =0

e If Cxy = 0, Cov(f(X),9(Y)) =0 VfEHa, g€,

o If kg, £, are characteristic:
» Cxy = 0implies X_1LY [Szabé/Sriperumbudur JMLR-18]

» XY iffCxy =0

» XY iff 0 = ||Cxv ||5g (sum squared singular values)
o HSIC: "Hilbert-Schmidt Independence Criterion"

https://arxiv.org/abs/1708.08157

HSIC

Cxv = E[k: (X,) ® by (Y, -)] — pp ® 1o
2
|Cxv [lfis = ey, — ke ® 103, g2,

HSIC

Cxv =Bk (X,-) ® by (Y,)] — pr ® 10
2
|Cxv [lfis = ey, — ke ® 103, g2,
= MMD (Pyxy, P x Q)?

HSIC

Cxv = Elk: (X,-) @ ky (V)] — pr ® 1o
|Cxv ks = ey, — 1o ® tolly, g,
= MMD (Pyxy, P x Q)?
= Elk, (X, X))k, (V, V)]
— 2K [k, (X, X)y (V, V)]
+ Efk, (X, X')] E[k, (Y, Y")]

HSIC

Cxv = Elk: (X,-) @ ky (V)] — pr ® 1o
2
|Cxv [lfis = ey, — ke ® 103, g2,
= MMD (Pyxy, P x Q)?
— 2E[k, (X, X)k, (Y, V"))
+ Elk, (X, X)) E[k, (Y, Y7)]

e Linear case: Cxy is cross-covariance matrix, HSIC is squared Frobenius norm

HSIC

Cxv =Elk.(X,) ® by (Y, +)] — pr ® 10
2
|Cxv [lfis = ey, — ke ® 103, g2,
= MMD (Pxy, P x Q)?
— E[ka: (X7 X,)ky(Ya Y,)]
— 2E [k, (X, X)k, (V, Y]
+ Elk, (X, X)] E[k, (Y, Y]

e Linear case: Cxy is cross-covariance matrix, HSIC is squared Frobenius norm

o Default estimator (biased, but simple): (HKxH,Kv)p, H =1 — 117

HSIC

Cxv = Elk: (X,-) @ ky (V)] — pr ® 1o
2
|Cxv [lfis = ey, — ke ® 103, g2,
= MMD (Pyxy, P x Q)?
— 2E[k, (X, X)k, (Y, V"))
+ Elk, (X, X)) E[k, (Y, Y7)]

= E jgp(0,,) [Cov(£(X),9(¥))’]
9~GP(0,k)

e Linear case: Cxy is cross-covariance matrix, HSIC is squared Frobenius norm

o Default estimator (biased, but simple): (HKxH,Kv)p, H =1 — 117

HSIC applications

Independence testing [Gretton+ NeurlPS-07]
Clustering [Song+ ICML-07]
Feature selection [Song+ JMLR-12]

HSIC Bottleneck: alternative to backprop [Ma+ AAAI-20]
= pbiologically plausible(ish) [Pogodin+ NeurlPS-20]

= more robust [Wang+ NeurlPS-21]

Self-supervised learning [Li+ NeurlPS-21]
= maybe better explanation of why InfoNCE/etc work

Broadly: easier-to-estimate, sometimes-nicer version of mutual information

https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
http://www.gatsby.ucl.ac.uk/~gretton/papers/SonSmoGreetal07a.pdf
https://jmlr.csail.mit.edu/papers/volume13/song12a/song12a.pdf
https://arxiv.org/abs/1908.01580
https://arxiv.org/abs/2006.07123
https://arxiv.org/abs/2106.02734
https://arxiv.org/abs/2106.08320

Example: SSL-HSIC [Li+ NeurlPS-21]

SSL-HSIC

e Maximizes dependence between image features f and its identity on a
minibatch

e Using a learned deep kernel based on g

https://arxiv.org/abs/2106.08320

Recap
e Point embedding k(X -):if f € H then (f, up)y = Exp f(X)
e Mean embedding up = Ek(X,:):if f € H then (f, up) = Exp f(X)

« MMD(P, Q) = ||up — 10 || is 0 iff P = () (for characteristic kernels)
o HSIC(X, Y) = CXY“HS = MMD(ny,]P) X Q)z isOiff XY

(for characteristic k5, k,...or slightly weaker)

e Often need to learn a kernel for good performance on complicated data
= Can often do end-to-end for downstream loss, asymptotic test power, ...

More resources

Berlinet and Thomas-Agnan, RKHS in Probability and Statistics
= kernels in general + mean embedding basics

Steinwart and Christmann, Support Vector Machines
= kernels in general, learning theory

Course slides by Julien Mairal + Jean-Philippe Vert
= kernels in general, learning theory

Course materials by Arthur Gretton
= kernels in general, mean embeddings, MMD/HSIC

Connections to Gaussian processes [Kanagawa+ 'GPs and Kernel Methods' 2018]
Mean embeddings: survey [Muandet+ 'Kernel Mean Embedding of Distributions']

These slides are at djsutherland.ml/slides/like23

https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522
https://djsutherland.ml/slides/like23/

