(Deep) Kernel Mean Embeddings for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/like23

(Deep) Kernel Mean Embeddings for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/like23

(Deep) Kernel Mean Embeddings for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/like23

(Deep) Kernel Mean Embeddings for Representing and Learning on Distributions

Danica J. Sutherland (she/her)

University of British Columbia + Amii
Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

HTML version at djsutherland.ml/slides/like23

Part I: Kernels

Why kernels?

- Machine learning!

Why kernels?

- Machine learning! ...but how do we actually do it?

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, probability distributions, ...

Why kernels?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x)=w_{0}+w x, \hat{y}(x)=\operatorname{sign}(f(x))$
- Extend x...

$$
f(x)=w^{\top}\left(1, x, x^{2}\right)=w^{\top} \phi(x)
$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, probability distributions, ...
- ϕ will live in a reproducing kernel Hilbert space

Hilbert spaces

- A complete (real or complex) inner product space

Hilbert spaces

- A complete (real inner product space

Hilbert spaces

- A complete (real inner product space
- Inner product space: a vector space with an inner product:
- $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
- $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
- $\langle f, f\rangle_{\mathcal{H}}>0$ for $f \neq 0,\langle 0,0\rangle_{\mathcal{H}}=0$

Hilbert spaces

- A complete (real inner product space
- Inner product space: a vector space with an inner product:
- $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
- $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
- $\langle f, f\rangle_{\mathcal{H}}>0$ for $f \neq 0,\langle 0,0\rangle_{\mathcal{H}}=0$

Induces a norm: $\|f\|_{\mathcal{H}}=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$

Hilbert spaces

- A complete (real inner product space
- Inner product space: a vector space with an inner product:
- $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
- $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
- $\langle f, f\rangle_{\mathcal{H}}>0$ for $f \neq 0,\langle 0,0\rangle_{\mathcal{H}}=0$

Induces a norm: $\|f\|_{\mathcal{H}}=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$

- Complete: "well-behaved" (Cauchy sequences have limits in \mathcal{H})

Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
- \mathbb{R}^{d}, functions, distributions of graphs of images, ...

Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
- \mathbb{R}^{d}, functions, distributions of graphs of images, ...
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ so that

$$
k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}
$$

Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
- \mathbb{R}^{d}, functions, distributions of graphs of images, ...
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ so that

$$
k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}
$$

- Roughly, k is a notion of "similarity" between inputs

Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
- \mathbb{R}^{d}, functions, distributions of graphs of images, ...
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ so that

$$
k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}
$$

- Roughly, k is a notion of "similarity" between inputs
- Linear kernel on $\mathbb{R}^{d}: k(x, y)=\langle x, y\rangle_{\mathbb{R}^{d}}$

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, usually symmetric, like RKHS kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
- Always requires $\int k(x, y) \mathrm{d} y=1$, unlike RKHS kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
- Always requires $\int k(x, y) \mathrm{d} y=1$, unlike RKHS kernel
- Often requires $k(x, y) \geq 0$, unlike RKHS kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
- Always requires $\int k(x, y) \mathrm{d} y=1$, unlike RKHS kernel
- Often requires $k(x, y) \geq 0$, unlike RKHS kernel
- Not required to be inner product, unlike RKHS kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map
- The kernel of a probability density

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map
- The kernel of a probability density
- The kernel of a convolution

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map
- The kernel of a probability density
- The kernel of a convolution
- CUDA kernels

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map
- The kernel of a probability density
- The kernel of a convolution
- CUDA kernels
- The Linux kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
- The kernel (null space) of a linear map
- The kernel of a probability density
- The kernel of a convolution
- CUDA kernels
- The Linux kernel
- Popcorn kernels

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel
- $k_{\gamma}(x, y)=\gamma\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\langle\sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)\rangle_{\mathcal{H}}$

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel
- $k_{\gamma}(x, y)=\gamma\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\langle\sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)\rangle_{\mathcal{H}}$
- Sum: $k_{+}(x, y)=k_{1}(x, y)+k_{2}(x, y)$ is a kernel

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel
- $k_{\gamma}(x, y)=\gamma\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\langle\sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)\rangle_{\mathcal{H}}$
- Sum: $k_{+}(x, y)=k_{1}(x, y)+k_{2}(x, y)$ is a kernel

$$
k_{+}(x, y)=\left\langle\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right],\left[\begin{array}{l}
\phi_{1}(y) \\
\phi_{2}(y)
\end{array}\right]\right\rangle_{\mathcal{H}_{1} \oplus \mathcal{H}_{2}}
$$

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel
- $k_{\gamma}(x, y)=\gamma\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\langle\sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)\rangle_{\mathcal{H}}$
- Sum: $k_{+}(x, y)=k_{1}(x, y)+k_{2}(x, y)$ is a kernel

$$
k_{+}(x, y)=\left\langle\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right],\left[\begin{array}{l}
\phi_{1}(y) \\
\phi_{2}(y)
\end{array}\right]\right\rangle_{\mathcal{H}_{1} \oplus \mathcal{H}_{2}}
$$

- Is $k_{1}(x, y)-k_{2}(x, y)$ necessarily a kernel?

Building kernels from other kernels

- Scaling: if $\gamma \geq 0, k_{\gamma}(x, y)=\gamma k(x, y)$ is a kernel

$$
\text { - } k_{\gamma}(x, y)=\gamma\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\langle\sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)\rangle_{\mathcal{H}}
$$

- Sum: $k_{+}(x, y)=k_{1}(x, y)+k_{2}(x, y)$ is a kernel

$$
k_{+}(x, y)=\left\langle\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right],\left[\begin{array}{l}
\phi_{1}(y) \\
\phi_{2}(y)
\end{array}\right]\right\rangle_{\mathcal{H}_{1} \oplus \mathcal{H}_{2}}
$$

- Is $k_{1}(x, y)-k_{2}(x, y)$ necessarily a kernel?
- Take $k_{1}(x, y)=0, k_{2}(x, y)=x y, x \neq 0$.
- Then $k_{1}(x, x)-k_{2}(x, x)=-x^{2}<0$
- But $k(x, x)=\|\phi(x)\|_{\mathcal{H}}^{2} \geq 0$.

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite
if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Equivalent: $n \times n$ kernel matrix K is psd (eigenvalues ≥ 0)

$$
K:=\left[\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right]
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}=\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} & =\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2}
\end{aligned}
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} & =\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0
\end{aligned}
$$

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd

Positive definiteness

- A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ i.e. $k(x, y)=k(y, x)$ is positive semi-definite if for all $n \geq 1,\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

- Hilbert space kernels are psd
- psd functions are Hilbert space kernels
- Moore-Aronszajn Theorem; we'll come back to this

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- $\lim _{m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k_{m}\left(x_{i}, x_{j}\right) \geq 0$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Let $V \sim \mathcal{N}\left(0, K_{1}\right), W \sim \mathcal{N}\left(0, K_{2}\right)$ be independent
- $\operatorname{Cov}\left(V_{i} W_{i}, V_{j} W_{j}\right)=\operatorname{Cov}\left(V_{i}, V_{j}\right) \operatorname{Cov}\left(W_{i}, W_{j}\right)=k_{\times}\left(x_{i}, x_{j}\right)$
- Covariance matrices are psd, so k_{\times}is too

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$

$$
x^{\top} y
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$

$$
x^{\top} y+c
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$

$$
\left(x^{\top} y+c\right)^{n}
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
$\left(x^{\top} y+c\right)^{n}$, the polynomial kernel

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- $k_{\exp }(x, y)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{n!} k(x, y)^{n}$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd
- Use the feature map $x \mapsto f(x) \phi(x)$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
x^{\top} y
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
\frac{1}{\sigma^{2}} x^{\top} y
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
\exp \left(\frac{1}{\sigma^{2}} x^{\top} y\right)
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
\exp \left(-\frac{1}{2 \sigma^{2}}\|x\|^{2}\right) \exp \left(\frac{1}{\sigma^{2}} x^{\top} y\right) \exp \left(-\frac{1}{2 \sigma^{2}}\|y\|^{2}\right)
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
\begin{aligned}
& \exp \left(-\frac{1}{2 \sigma^{2}}\|x\|^{2}\right) \exp \left(\frac{1}{\sigma^{2}} x^{\top} y\right) \exp \left(-\frac{1}{2 \sigma^{2}}\|y\|^{2}\right) \\
& \quad=\exp \left(-\frac{1}{2 \sigma^{2}}\left[\|x\|^{2}-2 x^{\top} y+\|y\|^{2}\right]\right)
\end{aligned}
$$

Some more ways to build kernels

- Limits: if $k_{\infty}(x, y)=\lim _{m \rightarrow \infty} k_{m}(x, y)$ exists, k_{∞} is psd
- Products: $k_{\times}(x, y)=k_{1}(x, y) k_{2}(x, y)$ is psd
- Powers: $k_{n}(x, y)=k(x, y)^{n}$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp }(x, y)=\exp (k(x, y))$ is pd
- If $f: X \rightarrow \mathbb{R}, k_{f}(x, y)=f(x) k(x, y) f(y)$ is pd

$$
\begin{aligned}
\exp (- & \left.\frac{1}{2 \sigma^{2}}\|x\|^{2}\right) \exp \left(\frac{1}{\sigma^{2}} x^{\top} y\right) \exp \left(-\frac{1}{2 \sigma^{2}}\|y\|^{2}\right) \\
& =\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right), \text { the Gaussian kernel }
\end{aligned}
$$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

- Kernel is $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=1+x y+x^{2} y^{2}$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

- Kernel is $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=1+x y+x^{2} y^{2}$
- Classifier based on linear $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}}$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

- Kernel is $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=1+x y+x^{2} y^{2}$
- Classifier based on linear $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^{3} $f(x) \in \mathbb{R}$ is the function evaluated at a point x

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

- Kernel is $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=1+x y+x^{2} y^{2}$
- Classifier based on linear $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^{3} $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- Elements of \mathcal{H} are functions, $f: \mathcal{X} \rightarrow \mathbb{R}$

Reproducing property

- Recall original motivating example with

$$
\mathcal{X}=\mathbb{R} \quad \phi(x)=\left(1, x, x^{2}\right) \in \mathbb{R}^{3}
$$

- Kernel is $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=1+x y+x^{2} y^{2}$
- Classifier based on linear $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^{3} $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- Elements of \mathcal{H} are functions, $f: \mathcal{X} \rightarrow \mathbb{R}$
- Reproducing property: $f(x)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}}$ for $f \in \mathcal{H}$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H}, and $\operatorname{arap} \phi: \mathcal{X} \rightarrow \mathcal{H}$ where
- $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$
- Elements $f \in \mathcal{H}$ are functions on \mathcal{X}, with $f(x)=\langle f, \phi(x)\rangle_{\mathcal{H}}$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H}, and $\operatorname{arap} \phi: \mathcal{X} \rightarrow \mathcal{H}$ where
- $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$
- Elements $f \in \mathcal{H}$ are functions on \mathcal{X}, with $f(x)=\langle f, \phi(x)\rangle_{\mathcal{H}}$
- Combining the two, we sometimes write $k(x, \cdot)=\phi(x)$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H}, and $\operatorname{arap} \phi: \mathcal{X} \rightarrow \mathcal{H}$ where
- $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$
- Elements $f \in \mathcal{H}$ are functions on \mathcal{X}, with $f(x)=\langle f, \phi(x)\rangle_{\mathcal{H}}$
- Combining the two, we sometimes write $k(x, \cdot)=\phi(x)$
- $k(x, \cdot)$ is the evaluation functional

An RKHS is defined by it being continuous, or

$$
|f(x)| \leq M_{x}\|f\|_{\mathcal{H}}
$$

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
- Define $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$ from $\langle k(x, \cdot), k(y, \cdot)\rangle_{\mathcal{H}_{0}}=k(x, y)$

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
- Define $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$ from $\langle k(x, \cdot), k(y, \cdot)\rangle_{\mathcal{H}_{0}}=k(x, y)$
- Take \mathcal{H} to be completion of \mathcal{H}_{0} in the metric from $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
- Define $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$ from $\langle k(x, \cdot), k(y, \cdot)\rangle_{\mathcal{H}_{0}}=k(x, y)$
- Take \mathcal{H} to be completion of \mathcal{H}_{0} in the metric from $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$
- Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
- Define $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$ from $\langle k(x, \cdot), k(y, \cdot)\rangle_{\mathcal{H}_{0}}=k(x, y)$
- Take \mathcal{H} to be completion of \mathcal{H}_{0} in the metric from $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$
- Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}
- Can also show uniqueness

Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k :
- Start with $\mathcal{H}_{0}=\operatorname{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
- Define $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$ from $\langle k(x, \cdot), k(y, \cdot)\rangle_{\mathcal{H}_{0}}=k(x, y)$
- Take \mathcal{H} to be completion of \mathcal{H}_{0} in the metric from $\langle\cdot, \cdot\rangle_{\mathcal{H}_{0}}$
- Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}
- Can also show uniqueness
- Theorem: k is psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$
- $k(x, \cdot)=\left[y \mapsto x^{\top} y\right]$ "corresponds to" x

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$
- $k(x, \cdot)=\left[y \mapsto x^{\top} y\right]$ "corresponds to" x
- If $f(y)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, y\right)$, then $f(y)=\left[\sum_{i=1}^{n} a_{i} x_{i}\right]^{\top} y$

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$
- $k(x, \cdot)=\left[y \mapsto x^{\top} y\right]$ "corresponds to" x
- If $f(y)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, y\right)$, then $f(y)=\left[\sum_{i=1}^{n} a_{i} x_{i}\right]^{\top} y$
- Closure doesn't add anything here, since \mathbb{R}^{d} is closed

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$
- $k(x, \cdot)=\left[y \mapsto x^{\top} y\right]$ "corresponds to" x
- If $f(y)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, y\right)$, then $f(y)=\left[\sum_{i=1}^{n} a_{i} x_{i}\right]^{\top} y$
- Closure doesn't add anything here, since \mathbb{R}^{d} is closed
- So, linear kernel gives you RKHS of linear functions

A quick check: linear kernels

- $k(x, y)=x^{\top} y$ on $\mathcal{X}=\mathbb{R}^{d}$
- $k(x, \cdot)=\left[y \mapsto x^{\top} y\right]$ "corresponds to" x
- If $f(y)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, y\right)$, then $f(y)=\left[\sum_{i=1}^{n} a_{i} x_{i}\right]^{\top} y$
- Closure doesn't add anything here, since \mathbb{R}^{d} is closed
- So, linear kernel gives you RKHS of linear functions
- $\|f\|_{\mathcal{H}}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right)}=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|$

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional
- Functions in \mathcal{H} are bounded:

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}} \leq \sqrt{k(x, x)}\|f\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}
$$

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional
- Functions in \mathcal{H} are bounded:
$f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}} \leq \sqrt{k(x, x)}\|f\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}$
- Choice of σ controls how fast functions can vary:

$$
\begin{aligned}
f(x+t)-f(x) & \leq\left\|k(x+t, \cdot)-k\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \\
\|k(x+t, \cdot)-k(x, \cdot)\|_{\mathcal{H}}^{2} & =2-2 k(x, x+t)=2-2 \exp \left(-\frac{\|t\|^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional
- Functions in \mathcal{H} are bounded:
$f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}} \leq \sqrt{k(x, x)}\|f\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}$
- Choice of σ controls how fast functions can vary:

$$
\begin{aligned}
f(x+t)-f(x) & \leq\left\|k(x+t, \cdot)-k\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \\
\|k(x+t, \cdot)-k(x, \cdot)\|_{\mathcal{H}}^{2} & =2-2 k(x, x+t)=2-2 \exp \left(-\frac{\|t\|^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

More complicated: Gaussian kernels

$$
k(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- \mathcal{H} is infinite-dimensional
- Functions in \mathcal{H} are bounded:

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}} \leq \sqrt{k(x, x)}\|f\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}
$$

- Choice of σ controls how fast functions can vary:

$$
\begin{aligned}
f(x+t)-f(x) & \leq\left\|k(x+t, \cdot)-k\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \\
\|k(x+t, \cdot)-k(x, \cdot)\|_{\mathcal{H}}^{2} & =2-2 k(x, x+t)=2-2 \exp \left(-\frac{\|t\|^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

- Can say lots more with Fourier properties

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Linear kernel gives normal ridge regression:

$$
\hat{f}(x)=\hat{w}^{\top} x ; \quad \hat{w}=\underset{w \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|^{2}
$$

Nonlinear kernels will give nonlinear regression!

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ?

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

- Let $\mathcal{H}_{X}=\operatorname{span}\left\{k\left(x_{i}, \cdot\right)\right\}_{i=1}^{n}$, and \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

- Let $\mathcal{H}_{X}=\operatorname{span}\left\{k\left(x_{i}, \cdot\right)\right\}_{i=1}^{n}$, and \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f=f_{X}+f_{\perp}$ with $f_{X} \in \mathcal{H}_{X}, f_{\perp} \in \mathcal{H}_{\perp}$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

- Let $\mathcal{H}_{X}=\operatorname{span}\left\{k\left(x_{i}, \cdot\right)\right\}_{i=1}^{n}$, and \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f=f_{X}+f_{\perp}$ with $f_{X} \in \mathcal{H}_{X}, f_{\perp} \in \mathcal{H}_{\perp}$
- $f\left(x_{i}\right)=\left\langle f_{X}+f_{\perp}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=\left\langle f_{X}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

- Let $\mathcal{H}_{X}=\operatorname{span}\left\{k\left(x_{i}, \cdot\right)\right\}_{i=1}^{n}$, and \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f=f_{X}+f_{\perp}$ with $f_{X} \in \mathcal{H}_{X}, f_{\perp} \in \mathcal{H}_{\perp}$
- $f\left(x_{i}\right)=\left\langle f_{X}+f_{\perp}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=\left\langle f_{X}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}$
- $\|f\|_{\mathcal{H}}^{2}=\left\|f_{X}\right\|_{\mathcal{H}}^{2}+\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem

- Let $\mathcal{H}_{X}=\operatorname{span}\left\{k\left(x_{i}, \cdot\right)\right\}_{i=1}^{n}$, and \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f=f_{X}+f_{\perp}$ with $f_{X} \in \mathcal{H}_{X}, f_{\perp} \in \mathcal{H}_{\perp}$
- $f\left(x_{i}\right)=\left\langle f_{X}+f_{\perp}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=\left\langle f_{X}, k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}$
- $\|f\|_{\mathcal{H}}^{2}=\left\|f_{X}\right\|_{\mathcal{H}}^{2}+\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}$
- Minimizer needs $f_{\perp}=0$, and so $\hat{f}=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, \cdot\right)$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\sum_{i=1}^{n}\left([K \alpha]_{i}-y_{i}\right)^{2}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\sum_{i=1}^{n}\left([K \alpha]_{i}-y_{i}\right)^{2}=\|K \alpha-y\|^{2}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2} & =\sum_{i=1}^{n}\left([K \alpha]_{i}-y_{i}\right)^{2}=\|K \alpha-y\|^{2} \\
& =\alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y
\end{aligned}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\sum_{i=1}^{n}\left([K \alpha]_{i}-y_{i}\right)^{2}=\|K \alpha-y\|^{2} \\
&=\alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y \\
&\left\|\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, \cdot\right)\right\|_{\mathcal{H}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} k\left(x_{i}, x_{j}\right) \alpha_{j}
\end{aligned}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\sum_{i=1}^{n}\left([K \alpha]_{i}-y_{i}\right)^{2}=\|K \alpha-y\|^{2} \\
&=\alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y \\
&\left\|\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, \cdot\right)\right\|_{\mathcal{H}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} k\left(x_{i}, x_{j}\right) \alpha_{j}=\alpha^{\top} K \alpha
\end{aligned}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\hat{\alpha}=\underset{\alpha \in \mathbb{R}^{n}}{\arg \min } \alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y+n \lambda \alpha^{\top} K \alpha
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\begin{aligned}
\hat{\alpha} & =\underset{\alpha \in \mathbb{R}^{n}}{\arg \min } \alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y+n \lambda \alpha^{\top} K \alpha \\
& =\underset{\alpha \in \mathbb{R}^{n}}{\arg \min } \alpha^{\top} K(K+n \lambda I) \alpha-2 y^{\top} K \alpha
\end{aligned}
$$

Kernel ridge regression

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

How to find \hat{f} ? Representer Theorem: $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x_{i}, \cdot\right)$

$$
\begin{aligned}
\hat{\alpha} & =\underset{\alpha \in \mathbb{R}^{n}}{\arg \min } \alpha^{\top} K^{2} \alpha-2 y^{\top} K \alpha+y^{\top} y+n \lambda \alpha^{\top} K \alpha \\
& =\underset{\alpha \in \mathbb{R}^{n}}{\arg \min } \alpha^{\top} K(K+n \lambda I) \alpha-2 y^{\top} K \alpha
\end{aligned}
$$

Setting derivative to zero gives $K(K+n \lambda I) \hat{\alpha}=K y$, satisfied by $\hat{\alpha}=(K+n \lambda I)^{-1} y$

Kernel ridge regression and GP regression

- Compare to regression with $\mathcal{G P}(0, k)$ prior, $\mathcal{N}\left(0, \sigma^{2}\right)$ observation noise

Kernel ridge regression and GP regression

- Compare to regression with $\mathcal{G P}(0, k)$ prior, $\mathcal{N}\left(0, \sigma^{2}\right)$ observation noise
- If we take $\lambda=\sigma^{2} / n$, KRR is exactly the GP regression posterior mean

Kernel ridge regression and GP regression

- Compare to regression with $\mathcal{G P}(0, k)$ prior, $\mathcal{N}\left(0, \sigma^{2}\right)$ observation noise
- If we take $\lambda=\sigma^{2} / n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples are not in \mathcal{H}, but are in a slightly bigger RKHS

Kernel ridge regression and GP regression

- Compare to regression with $\mathcal{G P}(0, k)$ prior, $\mathcal{N}\left(0, \sigma^{2}\right)$ observation noise
- If we take $\lambda=\sigma^{2} / n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples are not in \mathcal{H}, but are in a slightly bigger RKHS
- Also a connection between posterior variance and KRR worst-case error

Kernel ridge regression and GP regression

- Compare to regression with $\mathcal{G P}(0, k)$ prior, $\mathcal{N}\left(0, \sigma^{2}\right)$ observation noise
- If we take $\lambda=\sigma^{2} / n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples are not in \mathcal{H}, but are in a slightly bigger RKHS
- Also a connection between posterior variance and KRR worst-case error
- For many more details:

Gaussian Processes and Kernel Methods:
A Review on Connections and Equivalences

Other kernel algorithms

- Representer theorem applies if R is strictly increasing in

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)+R\left(\|f\|_{\mathcal{H}}\right)
$$

- Kernel methods can then train based on kernel matrix K

Other kernel algorithms

- Representer theorem applies if R is strictly increasing in

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)+R\left(\|f\|_{\mathcal{H}}\right)
$$

- Kernel methods can then train based on kernel matrix K
- Classification algorithms:
- Support vector machines: L is hinge loss
- Kernel logistic regression: L is logistic loss

Other kernel algorithms

- Representer theorem applies if R is strictly increasing in

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)+R\left(\|f\|_{\mathcal{H}}\right)
$$

- Kernel methods can then train based on kernel matrix K
- Classification algorithms:
- Support vector machines: L is hinge loss
- Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis

Other kernel algorithms

- Representer theorem applies if R is strictly increasing in

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)+R\left(\|f\|_{\mathcal{H}}\right)
$$

- Kernel methods can then train based on kernel matrix K
- Classification algorithms:
- Support vector machines: L is hinge loss
- Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis
- Many, many more...

Other kernel algorithms

- Representer theorem applies if R is strictly increasing in

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)+R\left(\|f\|_{\mathcal{H}}\right)
$$

- Kernel methods can then train based on kernel matrix K
- Classification algorithms:
- Support vector machines: L is hinge loss
- Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis
- Many, many more...
- But not everything works...e.g. Lasso $\|w\|_{1}$ regularizer

Some very very quick theory

- Generalization: how close is my training set error to the population error?

Some very very quick theory

- Generalization: how close is my training set error to the population error? - Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
- For universal kernels, can approximate any target with finite norm

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
- For universal kernels, can approximate any target with finite norm
- Gaussian is universal \mathfrak{B}

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
- For universal kernels, can approximate any target with finite norm
- Gaussian is universal (nothing finite-dimensional can be)

Some very very quick theory

- Generalization: how close is my training set error to the population error?
- Say $k(x, x) \leq 1$, consider $\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$, ρ-Lipschitz loss
- Rademacher argument implies expected overfitting $\leq \frac{2 \rho B}{\sqrt{n}}$
- If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
- For universal kernels, can approximate any target with finite norm
- Gaussian is universal (nothing finite-dimensional can be)
- But "finite" can be really really really big

Limitations of kernel-based learning

- Generally bad at learning sparsity
- e.g. $f\left(x_{1}, \ldots, x_{d}\right)=3 x_{2}-5 x_{17}$ for large d

Limitations of kernel-based learning

- Generally bad at learning sparsity
- e.g. $f\left(x_{1}, \ldots, x_{d}\right)=3 x_{2}-5 x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
- e.g. to learn a single ReLU, $\max \left(0, w^{\top} x\right)$, need norm exponential in d [Yehudai/Shamir NeurlPS-19]
- Also some hierarchical problems, etc [Kamath+ COLT-20]

Limitations of kernel-based learning

- Generally bad at learning sparsity
- e.g. $f\left(x_{1}, \ldots, x_{d}\right)=3 x_{2}-5 x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
- e.g. to learn a single ReLU, $\max \left(0, w^{\top} x\right)$, need norm exponential in d [Yehudai/Shamir NeurlPS-19]
- Also some hierarchical problems, etc [Kamath+ COLT-20]
- Generally apply to learning with any fixed kernel

Limitations of kernel-based learning

- Generally bad at learning sparsity
- e.g. $f\left(x_{1}, \ldots, x_{d}\right)=3 x_{2}-5 x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
- e.g. to learn a single ReLU, $\max \left(0, w^{\top} x\right)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
- Also some hierarchical problems, etc [Kamath+ COLT-20]
- Generally apply to learning with any fixed kernel
- $\mathcal{O}\left(n^{3}\right)$ computational complexity, $\mathcal{O}\left(n^{2}\right)$ memory
- Various approximations you can make

Part II: (Deep) Kernel Mean Embeddings

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}
$$

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}\rangle_{\mathcal{H}}
$$

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu \mathbb{P}}\rangle_{\mathcal{H}}
$$

- Last step assumed $\mathbb{E} \sqrt{k(X, X)}<\infty$ (Bochner integrability)

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \quad \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}\rangle_{\mathcal{H}}
$$

- Last step assumed $\mathbb{E} \sqrt{k(X, X)}<\infty$ (Bochner integrability)
- $\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} k(X, Y)$

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}\rangle_{\mathcal{H}}
$$

- Last step assumed $\mathbb{E} \sqrt{k(X, X)}<\infty$ (Bochner integrability)
- $\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} k(X, Y)$
- Okay. Why?

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \quad \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}\rangle_{\mathcal{H}}
$$

- Last step assumed $\mathbb{E} \sqrt{k(X, X)}<\infty$ (Bochner integrability)
- $\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} k(X, Y)$
- Okay. Why?
- One reason: ML on distributions [Szabó+ JMLR-16]

Mean embeddings of distributions

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot): \quad f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}}$
- Represent distribution \mathbb{P} as $\mu_{\mathbb{P}}: \quad \mathbb{E}_{X \sim \mathbb{P}} f(X)=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$

$$
\mathbb{E}_{X \sim \mathbb{P}} f(X)=\mathbb{E}_{X \sim \mathbb{P}}\langle f, k(X, \cdot)\rangle_{\mathcal{H}}=\langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}\rangle_{\mathcal{H}}
$$

- Last step assumed $\mathbb{E} \sqrt{k(X, X)}<\infty$ (Bochner integrability)
- $\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} k(X, Y)$
- Okay. Why?
- One reason: ML on distributions [Szabó+ JMLR-16]
- More common reason: comparing distributions

Maximum Mean Discrepancy

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

Maximum Mean Discrepancy

$$
\begin{aligned}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}) & =\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1}\left\langle f, \mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
& =\sup _{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
\end{aligned}
$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on \mathbb{P}, low on \mathbb{Q}

$$
f^{*}(t) \propto\left\langle\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}, k(t, \cdot)\right\rangle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}} k(t, X)-\mathbb{E}_{\mathbb{Q}} k(t, Y)
$$

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- i.e. $\mathbb{P} \mapsto \mu_{\mathbb{P}}$ is injective

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- i.e. $\mathbb{P} \mapsto \mu_{\mathbb{P}}$ is injective
- Makes MMD a metric on probability distributions

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- i.e. $\mathbb{P} \mapsto \mu_{\mathbb{P}}$ is injective
- Makes MMD a metric on probability distributions
- Universal \Longrightarrow characteristic

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- i.e. $\mathbb{P} \mapsto \mu_{\mathbb{P}}$ is injective
- Makes MMD a metric on probability distributions
- Universal \Longrightarrow characteristic
- If we use a linear kernel:
- $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}$ just Euclidean distance between means

MMD properties

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- i.e. $\mathbb{P} \mapsto \mu_{\mathbb{P}}$ is injective
- Makes MMD a metric on probability distributions
- Universal \Longrightarrow characteristic
- If we use a linear kernel:
- $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}$ just Euclidean distance between means
- If we use $k(x, y)=d(x, 0)+d(y, 0)-d(x, y)$, the squared MMD becomes the energy distance [Sejdinovic+ Annals-13]

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}: \mathbb{E} f(X) \approx \frac{1}{n} \sum_{j} f\left(Y_{j}\right)$ for all f

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}: \mathbb{E} f(X) \approx \frac{1}{n} \sum_{j} f\left(Y_{j}\right)$ for all f
- Letting $\mathbb{Q}=\frac{1}{T} \sum_{j=1}^{T} \delta_{Y_{j}}$, want $\left\langle f, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \approx\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}: \mathbb{E} f(X) \approx \frac{1}{n} \sum_{j} f\left(Y_{j}\right)$ for all f
- Letting $\mathbb{Q}=\frac{1}{T} \sum_{j=1}^{T} \delta_{Y_{j}}$, want $\left\langle f, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \approx\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
- Error $\leq\|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P}, \mathbb{Q})$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}: \mathbb{E} f(X) \approx \frac{1}{n} \sum_{j} f\left(Y_{j}\right)$ for all f
- Letting $\mathbb{Q}=\frac{1}{T} \sum_{j=1}^{T} \delta_{Y_{j}}$, want $\left\langle f, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \approx\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
- Error $\leq\|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P}, \mathbb{Q})$
- Greedily minimize the MMD:

$$
Y_{T+1} \in \underset{Y \in \mathcal{X}}{\arg \min } \mathbb{E}_{X^{\prime} \sim \mathbb{P}} k\left(Y, X^{\prime}\right)-\frac{1}{T+1} \sum_{j=1}^{T} k\left(Y, Y_{j}\right)
$$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}: \mathbb{E} f(X) \approx \frac{1}{n} \sum_{j} f\left(Y_{j}\right)$ for all f
- Letting $\mathbb{Q}=\frac{1}{T} \sum_{j=1}^{T} \delta_{Y_{j}}$, want $\left\langle f, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \approx\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
- Error $\leq\|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P}, \mathbb{Q})$
- Greedily minimize the MMD:

$$
Y_{T+1} \in \underset{Y \in \mathcal{X}}{\arg \min } \mathbb{E}_{X^{\prime} \sim \mathbb{P}} k\left(Y, X^{\prime}\right)-\frac{1}{T+1} \sum_{j=1}^{T} k\left(Y, Y_{j}\right)
$$

- Get $\mathcal{O}(1 / T)$ approximation instead of $\mathcal{O}(1 / \sqrt{T})$ with random samples
- Want a "super-s
- Letting
- Error ≤ 1
- Greedily minim

$$
Y_{T+1}
$$

- Get $\mathcal{O}(1 / T)$ a

$k\left(Y, Y_{j}\right)$

Figure 1: First 20 samples form herding (red squares) versus i.i.d. random sampling (purple circles).

Estimating MMD from samples

$$
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})=\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}
$$

Estimating MMD from samples

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})= & \left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{\substack{X, X^{\prime} \sim \mathbb{P} \\
Y, Y^{\prime} \sim \mathbb{Q}}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

Estimating MMD from samples

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})= & \left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{\substack{X, X^{\prime} \sim \mathbb{P}}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right] \\
& Y, Y^{\prime} \sim \mathbb{Q}
\end{aligned}
$$

$\widehat{\operatorname{MMD}}_{k}^{2}(X, Y)=\operatorname{mean}\left(K_{X X}\right)+\operatorname{mean}\left(K_{Y Y}\right)-2 \operatorname{mean}\left(K_{X Y}\right)$

Estimating MMD from samples

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})= & \left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{\substack{X, X^{\prime} \sim \mathbb{P}}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

$\widehat{\operatorname{MMD}}_{k}^{2}(X, Y)=\operatorname{mean}\left(K_{X X}\right)+\operatorname{mean}\left(K_{Y Y}\right)-2 \operatorname{mean}\left(K_{X Y}\right)$

Estimating MMD from samples

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})= & \left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{\substack{X, X^{\prime} \sim \mathbb{P} \\
\\
\\
Y, Y^{\prime} \sim \mathbb{Q}}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

$\widehat{\operatorname{MMD}}_{k}^{2}(X, Y)=\operatorname{mean}\left(K_{X X}\right)+\operatorname{mean}\left(K_{Y Y}\right)-2 \operatorname{mean}\left(K_{X Y}\right)$

$K_{Y Y}$		
${ }^{(3)}=$	$=$	(5.)
1.0	0.8	0.7
0.8	1.0	0.6
0.7	0.6	1.0

Estimating MMD from samples

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(\mathbb{P}, \mathbb{Q})= & \left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{\substack{X, X^{\prime} \sim \mathbb{P} \\
\\
\\
\\
Y, Y^{\prime} \sim \mathbb{Q}}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

$\widehat{\operatorname{MMD}}_{k}^{2}(X, Y)=\operatorname{mean}\left(K_{X X}\right)+\operatorname{mean}\left(K_{Y Y}\right)-2 \operatorname{mean}\left(K_{X Y}\right)$

MMD vs other distances

- MMD has easy $\mathcal{O}\left(n^{2}\right)$ estimator
- block or incomplete estimators are $\mathcal{O}\left(n^{\alpha}\right)$ for $\alpha \in[1,2]$, but noisier

MMD vs other distances

- MMD has easy $\mathcal{O}\left(n^{2}\right)$ estimator
- block or incomplete estimators are $\mathcal{O}\left(n^{\alpha}\right)$ for $\alpha \in[1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_{p}(1 / \sqrt{n})$ estimation error

MMD vs other distances

- MMD has easy $\mathcal{O}\left(n^{2}\right)$ estimator
- block or incomplete estimators are $\mathcal{O}\left(n^{\alpha}\right)$ for $\alpha \in[1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_{p}(1 / \sqrt{n})$ estimation error
- Independent of data dimension!

MMD vs other distances

- MMD has easy $\mathcal{O}\left(n^{2}\right)$ estimator
- block or incomplete estimators are $\mathcal{O}\left(n^{\alpha}\right)$ for $\alpha \in[1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_{p}(1 / \sqrt{n})$ estimation error
- Independent of data dimension!
- But, no free lunch...the value of the MMD generally shrinks with growing dimension, so constant $\mathcal{O}_{p}(1 / \sqrt{n})$ error gets worse relatively

MMD vs other distances

- MMD has eacu Con^{2})_ctimar
- block or ir
- For bounded
- Independ
- But, no fr dimensio

GP view of MMD

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q}) & =\left(\sup _{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right)^{2} \\
& =\operatorname{Var}_{f \sim \mathcal{G P}(0, k)}\left[\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right]
\end{aligned}
$$

GP view of MMD

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q}) & =\left(\sup _{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right)^{2} \\
& =\operatorname{Var}_{f \sim \mathcal{G P}(0, k)}\left[\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right]
\end{aligned}
$$

- Optimizing the gap in $\mathcal{H} \leftrightarrow$ average-case gap sampled from GP

GP view of MMD

$$
\begin{aligned}
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q}) & =\left(\sup _{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right)^{2} \\
& =\operatorname{Var}_{f \sim \mathcal{G P}(0, k)}\left[\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y)\right]
\end{aligned}
$$

- Optimizing the gap in $\mathcal{H} \leftrightarrow$ average-case gap sampled from GP
- Six-line proof [Kanagawa+ 18, Proposition 6.1]

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{D}
$$

- Do smokers/non-smokers get different cancers?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{O}
$$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?

Application: Two-sample testing

- Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?

Application: Two-sample testing

- Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{O}
$$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{D}
$$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000 s different from storms in the 1800 s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{D}
$$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000 s different from storms in the 1800 s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match $\mathbb{P}_{\text {data }}$?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?
- Hypothesis testing approach:

$$
H_{0}: \mathbb{P}=\mathbb{Q} \quad H_{1}: \mathbb{P} \neq \mathbb{Q}
$$

Application: Two-sample testing

- Given samples from two unknown distributions

$$
X \sim \mathbb{P} \quad Y \sim \mathbb{Q}
$$

- Question: is $\mathbb{P}=\mathbb{Q}$?
- Hypothesis testing approach:

$$
H_{0}: \mathbb{P}=\mathbb{Q} \quad H_{1}: \mathbb{P} \neq \mathbb{Q}
$$

- Reject H_{0} if $\widehat{\mathrm{MMD}}(X, Y)>c_{\alpha}$

What's a hypothesis test again?

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} \mathrm{~s}$, params depend on \mathbb{P} and k

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} \mathrm{~s}$, params depend on \mathbb{P} and k
- Can estimate threshold with permutation testing

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} \mathrm{~s}$, params depend on \mathbb{P} and k
- Can estimate threshold with permutation testing
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right) \xrightarrow{d}$ asymptotically normal

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} \mathrm{~s}$, params depend on \mathbb{P} and k
- Can estimate threshold with permutation testing
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right) \xrightarrow{d}$ asymptotically normal
- Any characteristic kernel gives consistent test

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} \mathrm{~s}$, params depend on \mathbb{P} and k
- Can estimate threshold with permutation testing
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right) \xrightarrow{d}$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually

MMD-based testing

- $H_{0}: n \widehat{\mathrm{MMD}}^{2}$ converges in distribution to...something
- Infinite mixture of $\chi^{2} s$, params depend on \mathbb{P} and k
- Can estimate threshold with permutation testing
- $H_{1}: \sqrt{n}\left(\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}\right) \xrightarrow{d}$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually
- Need enormous n if kernel is bad for problem

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_{0}, classification impossible: $\hat{T} \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)$

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_{0}, classification impossible: $\hat{T} \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)$
- With $k(x, y)=\frac{1}{4} f(x) f(y)$ where $f(x) \in\{-1,1\}$, get $\widehat{\mathrm{MMD}}(X, Y)=\left|\hat{T}(X, Y)-\frac{1}{2}\right|$

Deep learning and deep kernels

- $k(x, y)=\frac{1}{4} f(x) f(y)$ is one form of deep kernel

Deep learning and deep kernels

- $k(x, y)=\frac{1}{4} f(x) f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x)=w^{\top} \phi_{\psi}(x)$
- With a learned $\phi_{\psi}(x): \mathcal{X} \rightarrow \mathbb{R}^{D}$

Deep learning and deep kernels

- $k(x, y)=\frac{1}{4} f(x) f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x)=w^{\top} \phi_{\psi}(x)$
- With a learned $\phi_{\psi}(x): \mathcal{X} \rightarrow \mathbb{R}^{D}$
- If we fix ψ, have $f \in \mathcal{H}_{\psi}$ with $k_{\psi}(x, y)=\phi_{\psi}(x)^{\top} \phi_{\psi}(y)$

Deep learning and deep kernels

- $k(x, y)=\frac{1}{4} f(x) f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x)=w^{\top} \phi_{\psi}(x)$
- With a learned $\phi_{\psi}(x): \mathcal{X} \rightarrow \mathbb{R}^{D}$
- If we fix ψ, have $f \in \mathcal{H}_{\psi}$ with $k_{\psi}(x, y)=\phi_{\psi}(x)^{\top} \phi_{\psi}(y)$
- Same idea as NNGP approximation

Deep learning and deep kernels

- $k(x, y)=\frac{1}{4} f(x) f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x)=w^{\top} \phi_{\psi}(x)$
- With a learned $\phi_{\psi}(x): \mathcal{X} \rightarrow \mathbb{R}^{D}$
- If we fix ψ, have $f \in \mathcal{H}_{\psi}$ with $k_{\psi}(x, y)=\phi_{\psi}(x)^{\top} \phi_{\psi}(y)$
- Same idea as NNGP approximation
- Generalize to a deep kernel:

$$
k_{\psi}(x, y)=\kappa\left(\phi_{\psi}(x), \phi_{\psi}(y)\right)
$$

Normal deep learning \subset deep kernels

- Take $\boldsymbol{k}_{\psi}(x, y)=\frac{1}{4} f_{\psi}(x) f_{\psi}(y)$
- Final function in \mathcal{H}_{ψ} will be $a f_{\psi}(x)$

Normal deep learning \subset deep kernels

- Take $k_{\psi}(x, y)=\frac{1}{4} f_{\psi}(x) f_{\psi}(y)+1$
- Final function in \mathcal{H}_{ψ} will be $a f_{\psi}(x)+b$

Normal deep learning \subset deep kernels

- Take $k_{\psi}(x, y)=\frac{1}{4} f_{\psi}(x) f_{\psi}(y)+1$
- Final function in \mathcal{H}_{ψ} will be $a f_{\psi}(x)+b$
- With logistic loss: this is Platt scaling

Normal deep learning \subset deep kernels

- Take $k_{\psi}(x, y)=\frac{1}{4} f_{\psi}(x) f_{\psi}(y)+1$
- Final function in \mathcal{H}_{ψ} will be $a f_{\psi}(x)+b$
- With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

```
Chuan Guo*1 Geoff Pleiss* Y Yu Sun*1 Kilian Q. Weinberger }\mp@subsup{}{}{1
```


"Normal deep learning \subset deep kernels" - so?

- This does not say that deep learning is (even approximately) a kernel method

"Normal deep learning \subset deep kernels" - so?

- This does not say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning
[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine
Pedro Domingos

"Normal deep learning \subset deep kernels" - so?

- This does not say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning
[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine
Pedro Domingos

- We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]

"Normal deep learning \subset deep kernels" - so?

- This does not say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine
Pedro Domingos

- We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]
- But deep kernel learning \neq traditional kernel models
- exactly like how usual deep learning \neq linear models

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\operatorname{Pr}_{H_{1}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\operatorname{Pr}_{H_{1}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\underset{H_{1}}{\operatorname{Pr}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_{1}}$ from U-statistic theory

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\operatorname{Pr}_{H_{1}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_{1}}$ from U-statistic theory
- Can show uniform $\mathcal{O}_{P}\left(n^{-\frac{1}{3}}\right)$ convergence of estimator

Optimizing power of MMD tests

- Asymptotics of $\widehat{\mathrm{MMD}}^{2}$ give us immediately that

$$
\operatorname{Pr}_{H_{1}}\left(n \widehat{\mathrm{MMD}}^{2}>c_{\alpha}\right) \approx \Phi\left(\frac{\sqrt{n} \mathrm{MMD}^{2}}{\sigma_{H_{1}}}-\frac{c_{\alpha}}{\sqrt{n} \sigma_{H_{1}}}\right)
$$

$\mathrm{MMD}, \sigma_{H_{1}}, c_{\alpha}$ are constants: first term usually dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^{2} / \sigma_{H_{1}}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_{1}}$ from U-statistic theory
- Can show uniform $\mathcal{O}_{P}\left(n^{-\frac{1}{3}}\right)$ convergence of estimator
- Get better tests (even after data splitting)

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}
- Minimize estimate of $\operatorname{MMD} \psi\left(\mathbb{P}^{m}, \mathbb{Q}_{\theta}^{n}\right)$ on a minibatch

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}
- Minimize estimate of $\operatorname{MMD} \psi\left(\mathbb{P}^{m}, \mathbb{Q}_{\theta}^{n}\right)$ on a minibatch
- MMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{MMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}
- Minimize estimate of $\operatorname{MMD} \psi\left(\mathbb{P}^{m}, \mathbb{Q}_{\theta}^{n}\right)$ on a minibatch
- MMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{MMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- SMMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{SMMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}
- Minimize estimate of $\operatorname{MMD} \psi\left(\mathbb{P}^{m}, \mathbb{Q}_{\theta}^{n}\right)$ on a minibatch
- MMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{MMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- SMMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{SMMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]
- Uses $\left\langle f, \partial_{x_{1}} k(x, \cdot)\right\rangle_{\mathcal{H}}=\partial_{x_{1}} f(x)$

Application: (S)MMD GANs

- An implicit generative model:
- A generator net outputs samples from \mathbb{Q}_{θ}
- Minimize estimate of $\operatorname{MMD} \psi\left(\mathbb{P}^{m}, \mathbb{Q}_{\theta}^{n}\right)$ on a minibatch
- MMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{MMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- SMMD GAN: $\min _{\theta}\left[\max _{\psi} \operatorname{SMMD}_{\psi}\left(\mathbb{P}, \mathbb{Q}_{\theta}\right)\right]$
- Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]
- Uses $\left\langle f, \partial_{x_{1}} k(x, \cdot)\right\rangle_{\mathcal{H}}=\partial_{x_{1}} f(x)$
- Standard WGAN-GP better thought of in kernel framework

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
- We can tell whether an applicant is "creditworthy"
- We can't distinguish applicants by race

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
- We can tell whether an applicant is "creditworthy"
- We can't distinguish applicants by race
- Find a good classifier with near-zero test power for race

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
- We can tell whether an applicant is "creditworthy"
- We can't distinguish applicants by race
- Find a good classifier with near-zero test power for race
- Minimizing the test power criterion turns out to be hard
- Workaround: minimize test power of a (theoretical) block test

Application: distribution regression/classification/...

- We can define a kernel on distributions by, e.g.,

$$
k(\mathbb{P}, \mathbb{Q})=\exp \left(-\frac{1}{2 \sigma^{2}} \operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})\right)
$$

- Some pointers:
[Muandet+ NeurlPS-12] [Sutherland 2016] [Szabó+ JMLR-16]

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\mathbb{E}[f(X)] \mathbb{E}[g(Y)]
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\mathbb{E}[f(X)] \mathbb{E}[g(Y)]=\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}}
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\begin{aligned}
\mathbb{E}[f(X)] \mathbb{E}[g(Y)] & =\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}} \\
& =\left\langle f,\left(\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right) g\right\rangle_{\mathcal{H}_{x}}
\end{aligned}
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\begin{aligned}
\mathbb{E}[f(X)] \mathbb{E}[g(Y)] & =\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}} \\
& =\left\langle f,\left(\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right) g\right\rangle_{\mathcal{H}_{x}} \\
\mathbb{E}[f(X) g(Y)] &
\end{aligned}
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\begin{aligned}
\mathbb{E}[f(X)] \mathbb{E}[g(Y)] & =\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}} \\
& =\left\langle f,\left(\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right) g\right\rangle_{\mathcal{H}_{x}} \\
\mathbb{E}[f(X) g(Y)] & =\mathbb{E}\left[\left\langle f, k_{x}(X, \cdot)\right\rangle_{\mathcal{H}_{x}}\left\langle k_{y}(Y, \cdot), g\right\rangle_{\mathcal{H}_{y}}\right]
\end{aligned}
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\begin{aligned}
\mathbb{E}[f(X)] \mathbb{E}[g(Y)] & =\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}} \\
& =\left\langle f,\left(\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right) g\right\rangle_{\mathcal{H}_{x}} \\
\mathbb{E}[f(X) g(Y)] & =\mathbb{E}\left[\left\langle f, k_{x}(X, \cdot)\right\rangle_{\mathcal{H}_{x}}\left\langle k_{y}(Y, \cdot), g\right\rangle_{\mathcal{H}_{y}}\right] \\
& =\left\langle f, \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right] g\right\rangle_{\mathcal{H}_{x}}
\end{aligned}
$$

Independence

- $X \Perp Y$ iff $\operatorname{Cov}(f(X), g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$:

$$
\begin{aligned}
\mathbb{E}[f(X)] \mathbb{E}[g(Y)] & =\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}_{x}}\left\langle\mu_{\mathbb{Q}}, g\right\rangle_{\mathcal{H}_{y}} \\
& =\left\langle f,\left(\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right) g\right\rangle_{\mathcal{H}_{x}} \\
\mathbb{E}[f(X) g(Y)] & =\mathbb{E}\left[\left\langle f, k_{x}(X, \cdot)\right\rangle_{\mathcal{H}_{x}}\left\langle k_{y}(Y, \cdot), g\right\rangle_{\mathcal{H}_{y}}\right] \\
& =\left\langle f, \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right] g\right\rangle_{\mathcal{H}_{x}} \\
\operatorname{Cov}(f(X), g(Y)) & =\left\langle f, C_{X Y} g\right\rangle_{\mathcal{H}_{x}}
\end{aligned}
$$

where $C_{X Y}: \mathcal{H}_{y} \rightarrow \mathcal{H}_{x}$ is

$$
\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mathbb{E}\left[k_{x}(X, \cdot)\right] \otimes \mathbb{E}\left[k_{y}(Y, \cdot)\right]
$$

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y}\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y} g\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$
- If $X \Perp Y$, then $C_{X Y}=0$

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y}\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$
- If $X \Perp Y$, then $C_{X Y}=0$
- If $C_{X Y}=0, \operatorname{Cov}(f(X), g(Y))=0 \quad \forall f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y} g\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$
- If $X \Perp Y$, then $C_{X Y}=0$
- If $C_{X Y}=0, \operatorname{Cov}(f(X), g(Y))=0 \quad \forall f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$
- If k_{x}, k_{y} are characteristic:
- $C_{X Y}=0$ implies $X \Perp Y$ [Szabó/Sriperumbudur JMLR-18]

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y} g\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$
- If $X \Perp Y$, then $C_{X Y}=0$
- If $C_{X Y}=0, \operatorname{Cov}(f(X), g(Y))=0 \quad \forall f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$
- If k_{x}, k_{y} are characteristic:
- $C_{X Y}=0$ implies $X \Perp Y$ [Szabó/Sriperumbudur JMLR-18]
- $X \Perp Y$ iff $C_{X Y}=0$

Cross-covariance operator and independence

- $\operatorname{Cov}(f(X), g(Y))=\left\langle f, C_{X Y} g\right\rangle_{\mathcal{H}_{x}}$
- $C_{X Y}=\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$
- If $X \Perp Y$, then $C_{X Y}=0$
- If $C_{X Y}=0, \operatorname{Cov}(f(X), g(Y))=0 \quad \forall f \in \mathcal{H}_{x}, g \in \mathcal{H}_{y}$
- If k_{x}, k_{y} are characteristic:
- $C_{X Y}=0$ implies $X \Perp Y$ [Szabó/Sriperumbudur JMLR-18]
- $X \Perp Y$ iff $C_{X Y}=0$
- $X \Perp Y$ iff $0=\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2}$ (sum squared singular values)
- HSIC: "Hilbert-Schmidt Independence Criterion"

HSIC

$$
\begin{aligned}
C_{X Y} & =\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2} & =\left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x}}^{2} \otimes \mathcal{H}_{y}
\end{aligned}
$$

HSIC

$$
\begin{aligned}
C_{X Y} & =\mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2} & =\left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x} \otimes \mathcal{H}_{y}} \\
& =\operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2}
\end{aligned}
$$

HSIC

$$
\begin{aligned}
C_{X Y}= & \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2}= & \left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x} \otimes \mathcal{H}_{y}}^{2} \\
= & \operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2} \\
= & \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{y}\left(Y, Y^{\prime}\right)\right] \\
& -2 \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{x}\left(Y, Y^{\prime \prime}\right)\right] \\
& +\mathbb{E}\left[k_{x}\left(X, X^{\prime}\right)\right] \mathbb{E}\left[k_{y}\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

HSIC

$$
\begin{aligned}
C_{X Y}= & \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2}= & \left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x} \otimes \mathcal{H}_{y}}^{2} \\
= & \operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2} \\
= & \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{y}\left(Y, Y^{\prime}\right)\right] \\
& -2 \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{x}\left(Y, Y^{\prime \prime}\right)\right] \\
& +\mathbb{E}\left[k_{x}\left(X, X^{\prime}\right)\right] \mathbb{E}\left[k_{y}\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

- Linear case: $C_{X Y}$ is cross-covariance matrix, HSIC is squared Frobenius norm

HSIC

$$
\begin{aligned}
C_{X Y}= & \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2}= & \left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x} \otimes \mathcal{H}_{y}}^{2} \\
= & \operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2} \\
= & \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{y}\left(Y, Y^{\prime}\right)\right] \\
& -2 \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{x}\left(Y, Y^{\prime \prime}\right)\right] \\
& +\mathbb{E}\left[k_{x}\left(X, X^{\prime}\right)\right] \mathbb{E}\left[k_{y}\left(Y, Y^{\prime}\right)\right]
\end{aligned}
$$

- Linear case: $C_{X Y}$ is cross-covariance matrix, HSIC is squared Frobenius norm
- Default estimator (biased, but simple): $\left\langle H K_{X} H, K_{Y}\right\rangle_{F}, H=I-\mathbf{1 1}^{\top}$

HSIC

$$
\begin{aligned}
C_{X Y}= & \mathbb{E}\left[k_{x}(X, \cdot) \otimes k_{y}(Y, \cdot)\right]-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}} \\
\left\|C_{X Y}\right\|_{\mathrm{HS}}^{2}= & \left\|\mu_{\mathbb{P}_{X Y}}-\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}\right\|_{\mathcal{H}_{x} \otimes \mathcal{H}_{y}}^{2} \\
= & \operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2} \\
= & \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{y}\left(Y, Y^{\prime}\right)\right] \\
& -2 \mathbb{E}\left[k_{x}\left(X, X^{\prime}\right) k_{x}\left(Y, Y^{\prime \prime}\right)\right] \\
& +\mathbb{E}\left[k_{x}\left(X, X^{\prime}\right)\right] \mathbb{E}\left[k_{y}\left(Y, Y^{\prime}\right)\right] \\
= & \mathbb{E}_{\substack{f \sim \mathcal{G P}\left(0, k_{x}\right) \\
g \sim \mathcal{G P}\left(0, k_{y}\right)}}\left[\operatorname{Cov}(f(X), g(Y))^{2}\right]
\end{aligned}
$$

- Linear case: $C_{X Y}$ is cross-covariance matrix, HSIC is squared Frobenius norm
- Default estimator (biased, but simple): $\left\langle H K_{X} H, K_{Y}\right\rangle_{F}, H=I-\mathbf{1 1}^{\top}$

HSIC applications

- Independence testing [Gretton+ NeurIPS-07]
- Clustering [Song+ ICML-07]
- Feature selection [Song+JMLR-12]
- HSIC Bottleneck: alternative to backprop [Ma+ AAAI-20]
- biologically plausible(ish) [Pogodin+ NeurIPS-20]
- more robust [Wang+ NeurIPS-21]
- Self-supervised learning [Li+ NeurIPS-21]
- maybe better explanation of why InfoNCE/etc work
-
- Broadly: easier-to-estimate, sometimes-nicer version of mutual information

Example: SSL-HSIC [Li+ Neurl|PS-21]

- Maximizes dependence between image features f and its identity on a minibatch
- Using a learned deep kernel based on g

Recap

- Point embedding $k(X, \cdot)$: if $f \in \mathcal{H}$ then $\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}} f(X)$
- Mean embedding $\mu_{\mathbb{P}}=\mathbb{E} k(X, \cdot)$: if $f \in \mathcal{H}$ then $\left\langle f, \mu_{\mathbb{P}}\right\rangle_{\mathcal{H}}=\mathbb{E}_{X \sim \mathbb{P}} f(X)$
- $\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}$ is 0 iff $\mathbb{P}=\mathbb{Q}$ (for characteristic kernels)
- $\operatorname{HSIC}(X, Y)=\left\|C_{X Y}\right\|_{H S}=\operatorname{MMD}\left(\mathbb{P}_{X Y}, \mathbb{P} \times \mathbb{Q}\right)^{2}$ is 0 iff $X \Perp Y$ (for characteristic k_{x}, k_{y}...or slightly weaker)
- Often need to learn a kernel for good performance on complicated data
- Can often do end-to-end for downstream loss, asymptotic test power, ...

More resources

- Berlinet and Thomas-Agnan, RKHS in Probability and Statistics
- kernels in general + mean embedding basics
- Steinwart and Christmann, Support Vector Machines
- kernels in general, learning theory
- Course slides by Julien Mairal + Jean-Philippe Vert
- kernels in general, learning theory
- Course materials by Arthur Gretton
- kernels in general, mean embeddings, MMD/HSIC
- Connections to Gaussian processes [Kanagawa+ 'GPs and Kernel Methods' 2018]
- Mean embeddings: survey [Muandet+ 'Kernel Mean Embedding of Distributions']
- These slides are at djsutherland.ml/slides/like23

