Danica J. Sutherland (she/her)

University of British Columbia + Amii Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

Danica J. Sutherland (she/her)

University of British Columbia + Amii Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

Danica J. Sutherland (she/her)

University of British Columbia + Amii Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

Danica J. Sutherland (she/her)

University of British Columbia + Amii Lifting Inference with Kernel Embeddings (LIKE-23), June 2023

This talk: how to lift inference with kernel embeddings

Part I: Kernels

• Machine learning!

• Machine learning! ...but how do we actually do it?

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1, x, x^2) = w^\mathsf{T} \phi(x)$$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend *x*...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend *x*...

$$f(x) = w^{\mathsf{T}}(1,x,x^2) = w^{\mathsf{T}}\phi(x)$$

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1, x, x^2) = w^\mathsf{T} \phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend *x*...

$$f(x) = w^\mathsf{T}(1, x, x^2) = w^\mathsf{T} \phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, <u>probability distributions</u>, ...

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \mathrm{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1, x, x^2) = w^\mathsf{T} \phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, <u>probability distributions</u>, ...
- ϕ will live in a *reproducing kernel Hilbert space*

• A complete (real or complex) inner product space

• A complete (real or complex) inner product space

- A complete (real or complex) inner product space
- Inner product space: a vector space with an **inner product**:
 - $\bullet \ \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$

•
$$\langle f,g
angle_{\mathcal{H}}=\langle g,f
angle_{\mathcal{H}}$$

•
$$\langle f,f
angle_{\mathcal{H}}>0$$
 for $f
eq 0$, $\langle 0,0
angle_{\mathcal{H}}=0$

- A complete (real or complex) inner product space
- Inner product space: a vector space with an **inner product**:
 - $\langle lpha_1 f_1 + lpha_2 f_2, g
 angle_{\mathcal{H}} = lpha_1 \langle f_1, g
 angle_{\mathcal{H}} + lpha_2 \langle f_2, g
 angle_{\mathcal{H}}$

•
$$\langle f,g
angle_{\mathcal{H}}=\langle g,f
angle_{\mathcal{H}}$$

• $\langle f,f
angle_{\mathcal{H}}>0$ for f
eq 0, $\langle 0,0
angle_{\mathcal{H}}=0$

Induces a $\operatorname{norm}: \|f\|_{\mathcal{H}} = \sqrt{\langle f, f
angle_{\mathcal{H}}}$

- A complete (real or complex) inner product space
- Inner product space: a vector space with an **inner product**:
 - $\bullet \ \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$

•
$$\langle f,g
angle_{\mathcal{H}}=\langle g,f
angle_{\mathcal{H}}$$

•
$$\langle f,f
angle_{\mathcal{H}}>0$$
 for $f
eq 0$, $\langle 0,0
angle_{\mathcal{H}}=0$

Induces a $\operatorname{norm}: \|f\|_{\mathcal{H}} = \sqrt{\langle f, f
angle_{\mathcal{H}}}$

• Complete: "well-behaved" (Cauchy sequences have limits in \mathcal{H})

- Call our domain \mathcal{X} , some set
 - \mathbb{R}^d , functions, distributions of graphs of images, ...

- Call our domain \mathcal{X} , some set
 - \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi: \mathcal{X} \to \mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

- Call our domain \mathcal{X} , some set
 - \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi: \mathcal{X} o \mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

• Roughly, $m{k}$ is a notion of "similarity" between inputs

- Call our domain \mathcal{X} , some set
 - \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi: \mathcal{X} o \mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

- Roughly, $m{k}$ is a notion of "similarity" between inputs
- Linear kernel on \mathbb{R}^d : $k(x,y) = \langle x,y
 angle_{\mathbb{R}^d}$

• Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
 - $k: \mathcal{X} imes \mathcal{X}
 ightarrow \mathbb{R}$, usually symmetric, like RKHS kernel

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
 - $k: \mathcal{X} imes \mathcal{X}
 ightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x,y) \mathrm{d}y = 1$, unlike RKHS kernel

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
 - $k: \mathcal{X} imes \mathcal{X}
 ightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x,y) \mathrm{d}y = 1$, unlike RKHS kernel
 - Often requires $k(x,y) \geq 0$, unlike RKHS kernel

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
 - $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x,y) \mathrm{d}y = 1$, unlike RKHS kernel
 - Often requires $k(x,y) \geq 0$, unlike RKHS kernel
 - Not required to be inner product, unlike RKHS kernel

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels
 - The Linux kernel

Aside: the name "kernel"

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Exactly the same: GP covariance function
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels
 - The Linux kernel
 - Popcorn kernels

• Scaling: if $\gamma \geq 0$, $k_\gamma(x,y) = \gamma k(x,y)$ is a kernel

- Scaling: if $\gamma \ge 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel
 - $k_\gamma(x,y)=\gamma\langle\phi(x),\phi(y)
 angle_{\mathcal{H}}=\langle\sqrt{\gamma}\phi(x),\sqrt{\gamma}\phi(y)
 angle_{\mathcal{H}}$

• Scaling: if
$$\gamma \ge 0$$
, $k_{\gamma}(x, y) = \gamma k(x, y)$ is a kernel
• $k_{\gamma}(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}}$

• Sum: $k_+(x,y)=k_1(x,y)+k_2(x,y)$ is a kernel

• Scaling: if
$$\gamma \ge 0$$
, $k_\gamma(x,y) = \gamma k(x,y)$ is a kernel
• $k_\gamma(x,y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}}$

• Sum:
$$k_+(x,y) = k_1(x,y) + k_2(x,y)$$
 is a kernel
• $k_+(x,y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$

• Scaling: if
$$\gamma \ge 0$$
, $k_\gamma(x,y) = \gamma k(x,y)$ is a kernel
• $k_\gamma(x,y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}}$

• Sum:
$$k_+(x,y) = k_1(x,y) + k_2(x,y)$$
 is a kernel
• $k_+(x,y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$

• Is
$$k_1(x,y)-k_2(x,y)$$
 necessarily a kernel?

• Scaling: if
$$\gamma \ge 0$$
, $k_\gamma(x,y) = \gamma k(x,y)$ is a kernel
• $k_\gamma(x,y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}}$

• Sum:
$$k_+(x,y) = k_1(x,y) + k_2(x,y)$$
 is a kernel
• $k_+(x,y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$

• Is
$$k_1(x,y)-k_2(x,y)$$
 necessarily a kernel?
• Take $k_1(x,y)=0$, $k_2(x,y)=xy$, $x
eq 0$.

• Then
$$k_1(x,x)-k_2(x,x)=-x^2<0$$

• But
$$k(x,x) = \|\phi(x)\|_{\mathcal{H}}^2 \geq 0.$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

• Equivalent: n imes n kernel matrix K is psd (eigenvalues ≥ 0)

$$K := egin{bmatrix} k(x_1,x_1) & k(x_1,x_2) & \dots & k(x_1,x_n)\ k(x_2,x_1) & k(x_2,x_2) & \dots & k(x_2,x_n)\ dots & dots & \ddots & dots\ k(x_n,x_1) & k(x_n,x_2) & \dots & k(x_n,x_n) \end{bmatrix}$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

$$\sum_{i=1}^n \sum_{j=1}^n \langle a_i \phi(x_i), a_j \phi(x_j)
angle_{\mathcal{H}}$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

$$\sum_{i=1}^n\sum_{j=1}^n\langle a_i\phi(x_i),a_j\phi(x_j)
angle_{\mathcal{H}}=\left\langle\sum_{i=1}^na_i\phi(x_i),\sum_{j=1}^na_j\phi(x_j)
ight
angle_{\mathcal{H}}$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

$$egin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\langle a_i\phi(x_i),a_j\phi(x_j)
angle_{\mathcal{H}}=\left\langle\sum_{i=1}^na_i\phi(x_i),\sum_{j=1}^na_j\phi(x_j)
ight
angle_{\mathcal{H}}\ &=\left\|\sum_{i=1}^na_i\phi(x_i)
ight\|_{\mathcal{H}}^2 \end{aligned}$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

$$egin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\langle a_i\phi(x_i),a_j\phi(x_j)
angle_{\mathcal{H}}=\left\langle\sum_{i=1}^na_i\phi(x_i),\sum_{j=1}^na_j\phi(x_j)
ight
angle_{\mathcal{H}}\ &=\left\|\sum_{i=1}^na_i\phi(x_i)
ight\|_{\mathcal{H}}^2\geq 0 \end{aligned}$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

• A symmetric function $k:\mathcal{X}\times\mathcal{X} o\mathbb{R}$ i.e. k(x,y)=k(y,x)is *positive semi-definite* if for all $n\geq 1$, $(a_1,\ldots,a_n)\in\mathbb{R}^n$, $(x_1,\ldots,x_n)\in\mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0$$

- Hilbert space kernels are psd
- psd functions are Hilbert space kernels
 - Moore-Aronszajn Theorem; we'll come back to this

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd

• Limits: if $k_\infty(x,y) = \lim_{m o\infty} k_m(x,y)$ exists, k_∞ is psd • $\lim_{m o\infty} \sum_{i=1}^n \sum_{j=1}^n a_i a_j k_m(x_i,x_j) \ge 0$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
 - Let $V \sim \mathcal{N}(0,K_1)$, $W \sim \mathcal{N}(0,K_2)$ be independent
 - $\operatorname{Cov}(V_iW_i,V_jW_j)=\operatorname{Cov}(V_i,V_j)\operatorname{Cov}(W_i,W_j)=k_{ imes}(x_i,x_j)$
 - Covariance matrices are psd, so $k_{ imes}$ is too

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y) = k(x,y)^n$ is pd for any integer $n \geq 0$ $x^{\mathsf{T}}y$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y) = k(x,y)^n$ is pd for any integer $n \geq 0$ $x^{\mathsf{T}}y + c$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y) = k(x,y)^n$ is pd for any integer $n \geq 0$ $ig(x^{\mathsf{T}}y+cig)^n$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$

 $(x^{\mathsf{T}}y+c)^n$, the polynomial kernel

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd • $k_{ ext{exp}}(x,y) = \lim_{N o \infty} \sum_{n=0}^{N} rac{1}{n!} k(x,y)^n$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X o \mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd • Use the feature map $x\mapsto f(x)\phi(x)$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$x^{\mathsf{T}}y$$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$rac{1}{\sigma^2}x^{\mathsf{T}}y$$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$\exp\left(rac{1}{\sigma^2}x^{\mathsf{T}}y
ight)$$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$\exp \Big(-rac{1}{2\sigma^2} \|x\|^2 \Big) \exp \Big(rac{1}{\sigma^2} x^{\mathsf{T}} y \Big) \exp \Big(-rac{1}{2\sigma^2} \|y\|^2 \Big)$$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$\exp\Big(-rac{1}{2\sigma^2}\|x\|^2\Big)\exp\Big(rac{1}{\sigma^2}x^{\mathsf{T}}y\Big)\exp\Big(-rac{1}{2\sigma^2}\|y\|^2\Big)$$

$$= \exp \Big(- rac{1}{2\sigma^2} ig[\|x\|^2 - 2x^{\mathsf{T}}y + \|y\|^2 ig] \Big)$$

- Limits: if $k_\infty(x,y) = \lim_{m o \infty} k_m(x,y)$ exists, k_∞ is psd
- Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- Exponents: $k_{ ext{exp}}(x,y) = \exp(k(x,y))$ is pd
- If $f:X
 ightarrow\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$\exp \Big(-rac{1}{2\sigma^2} \|x\|^2 \Big) \exp \Big(rac{1}{\sigma^2} x^{\mathsf{T}} y \Big) \exp \Big(-rac{1}{2\sigma^2} \|y\|^2 \Big)$$

$$= \exp \left(- rac{\|x-y\|^2}{2\sigma^2}
ight)$$
, the Gaussian kernel

$$\mathcal{X}=\mathbb{R} \qquad \phi(x)=(1,x,x^2)\in \mathbb{R}^3$$

$$\mathcal{X}=\mathbb{R} \qquad \phi(x)=(1,x,x^2)\in \mathbb{R}^3$$

$$\mathcal{X}=\mathbb{R} \qquad \phi(x)=(1,x,x^2)\in \mathbb{R}^3$$

• Kernel is
$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}} = 1 + xy + x^2y^2$$

$$\mathcal{X}=\mathbb{R} \qquad \phi(x)=(1,x,x^2)\in \mathbb{R}^3$$

- Kernel is $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}} = 1 + xy + x^2y^2$
- Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- Kernel is $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}} = 1 + xy + x^2y^2$
- Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- Kernel is $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}} = 1 + xy + x^2y^2$
- Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- Elements of $\mathcal H$ are functions, $f:\mathcal X o\mathbb R$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- Kernel is $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}} = 1 + xy + x^2y^2$
- Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself; corresponds to vector w in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- Elements of $\mathcal H$ are functions, $f:\mathcal X o\mathbb R$
- Reproducing property: $f(x) = \langle f(\cdot), \phi(x)
 angle_{\mathcal{H}}$ for $f \in \mathcal{H}$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H} , and a map $\phi:\mathcal{X}\to\mathcal{H}$ where
 - $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
 - Elements $f\in \mathcal{H}$ are functions on \mathcal{X} , with $f(x)=\langle f,\phi(x)
 angle_{\mathcal{H}}$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H} , and a map $\phi:\mathcal{X}\to\mathcal{H}$ where
 - $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
 - Elements $f\in \mathcal{H}$ are functions on \mathcal{X} , with $f(x)=\langle f,\phi(x)
 angle_{\mathcal{H}}$
- Combining the two, we sometimes write $k(x,\cdot)=\phi(x)$

Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H} , and a map $\phi:\mathcal{X}\to\mathcal{H}$ where
 - $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
 - Elements $f\in \mathcal{H}$ are functions on \mathcal{X} , with $f(x)=\langle f,\phi(x)
 angle_{\mathcal{H}}$
- Combining the two, we sometimes write $k(x,\cdot)=\phi(x)$
- $k(x,\cdot)$ is the evaluation functional An RKHS is defined by it being *continuous*, or

$$|f(x)| \leq M_x \|f\|_{\mathcal{H}}$$

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x, \cdot): x \in \mathcal{X}\})$

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot)
 angle_{\mathcal{H}_0} = k(x, y)$

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot)
 angle_{\mathcal{H}_0} = k(x, y)$
 - Take \mathcal{H} to be completion of \mathcal{H}_0 in the metric from $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$

- Building $\mathcal H$ for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot)
 angle_{\mathcal{H}_0} = k(x, y)$
 - Take $\mathcal H$ to be completion of $\mathcal H_0$ in the metric from $\langle \cdot, \cdot
 angle_{\mathcal H_0}$
 - Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$

- Building $\mathcal H$ for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot)
 angle_{\mathcal{H}_0} = k(x, y)$
 - Take $\mathcal H$ to be completion of $\mathcal H_0$ in the metric from $\langle \cdot, \cdot
 angle_{\mathcal H_0}$
 - Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$
 - Can also show uniqueness

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x, \cdot): x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot)
 angle_{\mathcal{H}_0} = k(x, y)$
 - Take $\mathcal H$ to be completion of $\mathcal H_0$ in the metric from $\langle \cdot, \cdot
 angle_{\mathcal H_0}$
 - Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$
 - Can also show uniqueness
- Theorem: $m{k}$ is psd iff it's the reproducing kernel of an RKHS

•
$$k(x,y) = x^{\mathsf{T}} y$$
 on $\mathcal{X} = \mathbb{R}^d$

•
$$k(x,y) = x^{\mathsf{T}}y$$
 on $\mathcal{X} = \mathbb{R}^d$
• $k(x,\cdot) = [y \mapsto x^{\mathsf{T}}y]$ "corresponds to" x

•
$$k(x,y) = x^{\mathsf{T}}y$$
 on $\mathcal{X} = \mathbb{R}^d$
• $k(x,\cdot) = [y \mapsto x^{\mathsf{T}}y]$ "corresponds to" x

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i,y)$$
, then $f(y) = \left[\sum_{i=1}^n a_i x_i
ight]^\mathsf{T} y$

•
$$k(x,y) = x^{\mathsf{T}}y$$
 on $\mathcal{X} = \mathbb{R}^d$
• $k(x,\cdot) = [y \mapsto x^{\mathsf{T}}y]$ "corresponds to" x

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i,y)$$
, then $f(y) = [\sum_{i=1}^n a_i x_i]^\mathsf{T} y$

- Closure doesn't add anything here, since \mathbb{R}^d is closed

•
$$k(x,y) = x^{\mathsf{T}} y$$
 on $\mathcal{X} = \mathbb{R}^d$
• $k(x,\cdot) = [y \mapsto x^{\mathsf{T}} y]$ "corresponds to" x

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i,y)$$
, then $f(y) = [\sum_{i=1}^n a_i x_i]^\mathsf{T} y$

- Closure doesn't add anything here, since \mathbb{R}^d is closed
- So, linear kernel gives you RKHS of linear functions

•
$$k(x,y) = x^{\mathsf{T}}y$$
 on $\mathcal{X} = \mathbb{R}^d$
• $k(x,\cdot) = [y \mapsto x^{\mathsf{T}}y]$ "corresponds to" x

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i,y)$$
, then $f(y) = [\sum_{i=1}^n a_i x_i]^\mathsf{T} y$

- Closure doesn't add anything here, since \mathbb{R}^d is closed
- So, linear kernel gives you RKHS of linear functions

$$ullet \ \|f\|_{\mathcal{H}} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j)} = \|\sum_{i=1}^n a_i x_i\|_{\mathcal{H}}$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

- ${\cal H}$ is infinite-dimensional
- Functions in $\mathcal H$ are bounded: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal H} \leq \sqrt{k(x, x)} \| f \|_{\mathcal H} = \| f \|_{\mathcal H}$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

- ${\cal H}$ is infinite-dimensional
- Functions in $\mathcal H$ are bounded: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal H} \leq \sqrt{k(x, x)} \| f \|_{\mathcal H} = \| f \|_{\mathcal H}$
- Choice of σ controls how fast functions can vary:

$$egin{aligned} &f(x+t)-f(x)\leq \|k(x+t,\cdot)-k(x',\cdot)\|_{\mathcal{H}}\|f\|_{\mathcal{H}}\ \|k(x+t,\cdot)-k(x,\cdot)\|_{\mathcal{H}}^2&=2-2k(x,x+t)=2-2\expigg(-rac{\|t\|^2}{2\sigma^2}igg) \end{aligned}$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

- ${\cal H}$ is infinite-dimensional
- Functions in $\mathcal H$ are bounded: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal H} \leq \sqrt{k(x, x)} \| f \|_{\mathcal H} = \| f \|_{\mathcal H}$
- Choice of σ controls how fast functions can vary:

$$egin{aligned} &f(x+t)-f(x)\leq \|k(x+t,\cdot)-k(x',\cdot)\|_{\mathcal{H}}\|f\|_{\mathcal{H}}\ \|k(x+t,\cdot)-k(x,\cdot)\|_{\mathcal{H}}^2&=2-2k(x,x+t)=2-2\expigg(-rac{\|t\|^2}{2\sigma^2}igg) \end{aligned}$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x-y\|^2)$$

- ${\cal H}$ is infinite-dimensional
- Functions in $\mathcal H$ are bounded: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal H} \leq \sqrt{k(x, x)} \| f \|_{\mathcal H} = \| f \|_{\mathcal H}$
- Choice of σ controls how fast functions can vary:

$$egin{aligned} &f(x+t)-f(x)\leq \|k(x+t,\cdot)-k(x',\cdot)\|_{\mathcal{H}}\|f\|_{\mathcal{H}}\ \|k(x+t,\cdot)-k(x,\cdot)\|_{\mathcal{H}}^2&=2-2k(x,x+t)=2-2\expigg(-rac{\|t\|^2}{2\sigma^2}igg) \end{aligned}$$

• Can say lots more with Fourier properties

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Linear kernel gives normal ridge regression:

$$\hat{f}\left(x
ight) = \hat{w}^{\mathsf{T}}x; \hspace{1em} \hat{w} = rgmin_{w\in \mathbb{R}^d} rac{1}{n} \sum_{i=1}^n (w^{\mathsf{T}}x_i - y_i)^2 + \lambda \|w\|^2$$

Nonlinear kernels will give nonlinear regression!

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

How to find f?

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

How to find \hat{f} ? Representer Theorem

• Let $\mathcal{H}_X = ext{span}\{k(x_i,\cdot)\}_{i=1}^n$, and \mathcal{H}_\perp its **orthogonal complement** in \mathcal{H}

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = ext{span}\{k(x_i,\cdot)\}_{i=1}^n$, and \mathcal{H}_\perp its **orthogonal complement** in \mathcal{H}
- Decompose $f=f_X+f_\perp$ with $f_X\in \mathcal{H}_X$, $f_\perp\in \mathcal{H}_\perp$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = ext{span}\{k(x_i,\cdot)\}_{i=1}^n$, and \mathcal{H}_\perp its **orthogonal complement** in \mathcal{H}
- Decompose $f=f_X+f_\perp$ with $f_X\in \mathcal{H}_X$, $f_\perp\in \mathcal{H}_\perp$
- $\bullet \ f(x_i) = \langle f_X + f_{\bot}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = ext{span}\{k(x_i,\cdot)\}_{i=1}^n$, and \mathcal{H}_\perp its **orthogonal complement** in \mathcal{H}
- Decompose $f=f_X+f_\perp$ with $f_X\in \mathcal{H}_X$, $f_\perp\in \mathcal{H}_\perp$
- $\bullet \ f(x_i) = \langle f_X + f_{\bot}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$
- $ullet \ \|f\|^2_{\mathcal{H}} = \|f_X\|^2_{\mathcal{H}} + \|f_ot\|^2_{\mathcal{H}}$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = ext{span}\{k(x_i,\cdot)\}_{i=1}^n$, and \mathcal{H}_\perp its **orthogonal complement** in \mathcal{H}
- Decompose $f=f_X+f_\perp$ with $f_X\in \mathcal{H}_X$, $f_\perp\in \mathcal{H}_\perp$
- $f(x_i) = \langle f_X + f_{\perp}, k(x_i, \cdot)
 angle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot)
 angle_{\mathcal{H}}$
- $ullet \ \|f\|^2_{{\mathcal H}} = \|f_X\|^2_{{\mathcal H}} + \|f_ot\|^2_{{\mathcal H}}$
- Minimizer needs $f_{\perp}=0$, and so $\hat{f}=\sum_{i=1}^n lpha_i k(x_i,\cdot)$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j) - y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 &=\sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2 = \|Klpha-y\|^2 \ &=lpha^\mathsf{T} K^2 lpha-2y^\mathsf{T} K lpha+y^\mathsf{T} y \end{aligned}$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n iginlexts_{j=1}^n lpha_j k(x_i,x_j) - y_i iggredelt^2 &= \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2 \ &= lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y \end{aligned}$$

$$\left\|\sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_{\mathcal{H}}^2 = \sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j) lpha_j$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n iginlexts_{j=1}^n lpha_j k(x_i,x_j) - y_i iggright)^2 &= \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2 \ &= lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y \end{aligned}$$

$$\left\| \sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_{\mathcal{H}}^2 = \sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j) lpha_j = lpha^\mathsf{T} K lpha$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$\hat{lpha} = rgmin_{lpha \in \mathbb{R}^n} lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y + n\lambda lpha^\mathsf{T} K lpha$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} \hat{lpha} &= rg\min lpha^{\mathsf{T}} K^2 lpha - 2y^{\mathsf{T}} K lpha + y^{\mathsf{T}} y + n\lambda lpha^{\mathsf{T}} K lpha \ &= rg\min lpha^{\mathsf{T}} K (K + n\lambda I) lpha - 2y^{\mathsf{T}} K lpha \ &lpha \in \mathbb{R}^n \end{aligned}$$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

How to find \hat{f} ? Representer Theorem: $\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i,\cdot)$

$$egin{aligned} \hat{lpha} &= rg\min lpha^{\mathsf{T}} K^2 lpha - 2y^{\mathsf{T}} K lpha + y^{\mathsf{T}} y + n\lambda lpha^{\mathsf{T}} K lpha \ &= rg\min lpha^{\mathsf{T}} K (K + n\lambda I) lpha - 2y^{\mathsf{T}} K lpha \ &lpha \in \mathbb{R}^n \end{aligned}$$

Setting derivative to zero gives $K(K+n\lambda I)\hat{lpha}=Ky,$ satisfied by $\hat{lpha}=(K+n\lambda I)^{-1}y$

• Compare to regression with $\mathcal{GP}(0,k)$ prior, $\mathcal{N}(0,\sigma^2)$ observation noise

- Compare to regression with $\mathcal{GP}(0,k)$ prior, $\mathcal{N}(0,\sigma^2)$ observation noise
- If we take $\lambda = \sigma^2/n$, KRR is exactly the GP regression posterior mean

- Compare to regression with $\mathcal{GP}(0,k)$ prior, $\mathcal{N}(0,\sigma^2)$ observation noise
- If we take $\lambda=\sigma^2/n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples **are not** in \mathcal{H} , but are in a slightly bigger RKHS

- Compare to regression with $\mathcal{GP}(0,k)$ prior, $\mathcal{N}(0,\sigma^2)$ observation noise
- If we take $\lambda=\sigma^2/n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples **are not** in \mathcal{H} , but are in a slightly bigger RKHS
- Also a connection between posterior variance and KRR worst-case error

- Compare to regression with $\mathcal{GP}(0,k)$ prior, $\mathcal{N}(0,\sigma^2)$ observation noise
- If we take $\lambda=\sigma^2/n$, KRR is exactly the GP regression posterior mean
- Note that GP posterior samples **are not** in \mathcal{H} , but are in a slightly bigger RKHS
- Also a connection between posterior variance and KRR worst-case error
- For many more details:

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences

Motonobu Kanagawa¹, Philipp Hennig¹, Dino Sejdinovic², and Bharath K Sriperumbudur³

• Representer theorem applies if old R is strictly increasing in

$$\min_{f\in\mathcal{H}}L(f(x_1),\cdots,f(x_n))+R(\|f\|_{\mathcal{H}})$$

- Kernel methods can then train based on kernel matrix $oldsymbol{K}$

• Representer theorem applies if old R is strictly increasing in

$$\min_{f\in\mathcal{H}}L(f(x_1),\cdots,f(x_n))+R(\|f\|_{\mathcal{H}})$$

- Kernel methods can then train based on kernel matrix $oldsymbol{K}$
- Classification algorithms:
 - Support vector machines: *L* is hinge loss
 - Kernel logistic regression: L is logistic loss

• Representer theorem applies if old R is strictly increasing in

$$\min_{f\in\mathcal{H}}L(f(x_1),\cdots,f(x_n))+R(\|f\|_{\mathcal{H}})$$

- Kernel methods can then train based on kernel matrix $oldsymbol{K}$
- Classification algorithms:
 - Support vector machines: *L* is hinge loss
 - Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis

• Representer theorem applies if ${\it R}$ is strictly increasing in

$$\min_{f\in\mathcal{H}}L(f(x_1),\cdots,f(x_n))+R(\|f\|_{\mathcal{H}})$$

- Kernel methods can then train based on kernel matrix $oldsymbol{K}$
- Classification algorithms:
 - Support vector machines: *L* is hinge loss
 - Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis
- Many, many more...

• Representer theorem applies if ${\it R}$ is strictly increasing in

$$\min_{f\in\mathcal{H}}L(f(x_1),\cdots,f(x_n))+R(\|f\|_{\mathcal{H}})$$

- Kernel methods can then train based on kernel matrix $oldsymbol{K}$
- Classification algorithms:
 - Support vector machines: *L* is hinge loss
 - Kernel logistic regression: L is logistic loss
- Principal component analysis, canonical correlation analysis
- Many, many more...
- But not everything works...e.g. Lasso $\|w\|_1$ regularizer

• Generalization: how close is my training set error to the population error?

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
 - For *universal* kernels, can approximate any target with finite norm

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
 - For *universal* kernels, can approximate any target with finite norm
 - Gaussian is universal

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
 - For *universal* kernels, can approximate any target with finite norm
 - Gaussian is universal
 (nothing finite-dimensional can be)

Some very very quick theory

- Generalization: how close is my training set error to the population error?
 - Say $k(x,x) \leq 1$, consider $\{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \leq B\}$, ho-Lipschitz loss
 - Rademacher argument implies expected overfitting $\leq \frac{2\rho B}{\sqrt{n}}$
 - If "truth" has low RKHS norm, can learn efficiently
- Approximation: how big is RKHS norm of target function?
 - For *universal* kernels, can approximate any target with finite norm
 - Gaussian is universal
 (nothing finite-dimensional can be)
 - But "finite" can be really really really big

• Generally bad at learning *sparsity*

• e.g.
$$f(x_1,\ldots,x_d)=3x_2-5x_{17}$$
 for large d

- Generally bad at learning *sparsity*
 - e.g. $f(x_1,\ldots,x_d)=3x_2-5x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
 - e.g. to learn a single ReLU, $\max(0, w^{\mathsf{T}}x)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
 - Also some hierarchical problems, etc [Kamath+ COLT-20]

- Generally bad at learning *sparsity*
 - e.g. $f(x_1,\ldots,x_d)=3x_2-5x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
 - e.g. to learn a single ReLU, $\max(0, w^{\mathsf{T}}x)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
 - Also some hierarchical problems, etc [Kamath+ COLT-20]
 - Generally apply to learning with *any fixed kernel*

- Generally bad at learning *sparsity*
 - e.g. $f(x_1,\ldots,x_d)=3x_2-5x_{17}$ for large d
- Provably statistically slower than deep learning for a few problems
 - e.g. to learn a single ReLU, $\max(0, w^{\mathsf{T}}x)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
 - Also some hierarchical problems, etc [Kamath+ COLT-20]
 - Generally apply to learning with *any fixed kernel*
- $\mathcal{O}(n^3)$ computational complexity, $\mathcal{O}(n^2)$ memory
 - Various approximations you can make

Part II: (Deep) Kernel Mean Embeddings

• Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X \sim \mathbb P} f(X) = \langle f, \mu_{\mathbb P}
 angle_{\mathcal H}$

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X \sim \mathbb P} f(X) = \langle f, \mu_{\mathbb P}
 angle_{\mathcal H}$

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}}$

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X \sim \mathbb P} f(X) = \langle f, \mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Last step assumed $\mathbb{E}\sqrt{k(X,X)} < \infty$ (Bochner integrability)

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Last step assumed $\mathbb{E}\sqrt{k(X,X)} < \infty$ (Bochner integrability)

$$\bullet \ \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \ k(X, Y)$$

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Last step assumed $\mathbb{E}\sqrt{k(X,X)} < \infty$ (Bochner integrability)
- $\bullet \ \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \ k(X,Y)$
- Okay. Why?

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Last step assumed $\mathbb{E}\sqrt{k(X,X)} < \infty$ (Bochner integrability)
- $\bullet \ \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \ k(X, Y)$
- Okay. Why?
 - One reason: ML on distributions [Szabó+ JMLR-16]

- Represent point $x \in \mathcal{X}$ as $k(x, \cdot)$: $f(x) = \langle f, k(x, \cdot)
 angle_{\mathcal{H}}$
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$: $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot)
angle_{\mathcal{H}} = \langle f, \underbrace{\mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot)}_{\mu_{\mathbb{P}}}
angle_{\mathcal{H}}$$

- Last step assumed $\mathbb{E}\sqrt{k(X,X)} < \infty$ (Bochner integrability)
- $\bullet \ \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \ k(X, Y)$
- Okay. Why?
 - One reason: ML on distributions [Szabó+ JMLR-16]
 - More common reason: comparing distributions

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \end{aligned}$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

• Last line is Integral Probability Metric (IPM) form

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_\mathbb{P} - \mu_\mathbb{Q}, k(t, \cdot)
angle_\mathcal{H} = \mathbb{E}_\mathbb{P} \: k(t, X) - \mathbb{E}_\mathbb{Q} \: k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_\mathbb{P} - \mu_\mathbb{Q}, k(t,\cdot)
angle_\mathcal{H} = \mathbb{E}_\mathbb{P} \; k(t,X) - \mathbb{E}_\mathbb{Q} \; k(t,Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \: k(t, X) - \mathbb{E}_{\mathbb{Q}} \: k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot) \rangle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

$$egin{aligned} \mathrm{MMD}(\mathbb{P},\mathbb{Q}) &= \| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \end{aligned}$$

- Last line is Integral Probability Metric (IPM) form
- f is called "witness function" or "critic": high on $\mathbb P$, low on $\mathbb Q$

$$f^*(t) \propto \langle \mu_\mathbb{P} - \mu_\mathbb{Q}, k(t, \cdot)
angle_\mathcal{H} = \mathbb{E}_\mathbb{P} \: k(t, X) - \mathbb{E}_\mathbb{Q} \: k(t, Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$

• $MMD(\mathbb{P},\mathbb{P}) = 0$, symmetry, triangle inequality

- $\mathrm{MMD}(\mathbb{P},\mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
 - i.e. $\mathbb{P}\mapsto \mu_{\mathbb{P}}$ is injective

- $\mathrm{MMD}(\mathbb{P},\mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
 - i.e. $\mathbb{P}\mapsto \mu_{\mathbb{P}}$ is injective
 - Makes MMD a metric on probability distributions

- $\mathrm{MMD}(\mathbb{P},\mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
 - i.e. $\mathbb{P}\mapsto \mu_{\mathbb{P}}$ is injective
 - Makes MMD a metric on probability distributions
 - Universal \implies characteristic

- $\mathrm{MMD}(\mathbb{P},\mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
 - i.e. $\mathbb{P}\mapsto \mu_{\mathbb{P}}$ is injective
 - Makes MMD a metric on probability distributions
 - Universal \implies characteristic
- If we use a linear kernel:
 - $MMD(\mathbb{P}, \mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ just Euclidean distance between means

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$

- $\mathrm{MMD}(\mathbb{P},\mathbb{P})=0$, symmetry, triangle inequality
- If k is characteristic, then $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
 - i.e. $\mathbb{P}\mapsto \mu_{\mathbb{P}}$ is injective
 - Makes MMD a metric on probability distributions
 - Universal \implies characteristic
- If we use a linear kernel:

• $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ just Euclidean distance between means

• If we use k(x,y) = d(x,0) + d(y,0) - d(x,y), the squared MMD becomes the *energy distance* [Sejdinovic+ Annals-13]

Application: Kernel Herding

• Want a "super-sample" from $\mathbb{P}:\mathbb{E}\,f(X)pproxrac{1}{n}\sum_j f(Y_j)$ for all f

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}:\mathbb{E}\,f(X)pproxrac{1}{n}\sum_j f(Y_j)$ for all f
 - Letting $\mathbb{Q} = rac{1}{T} \sum_{j=1}^T \delta_{Y_j}$, want $\langle f, \mu_{\mathbb{Q}}
 angle_{\mathcal{H}} pprox \langle f, \mu_{\mathbb{P}}
 angle_{\mathcal{H}}$ for all $f \in \mathcal{H}$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}:\mathbb{E}\,f(X)pproxrac{1}{n}\sum_j f(Y_j)$ for all f
 - Letting $\mathbb{Q} = rac{1}{T} \sum_{j=1}^T \delta_{Y_j}$, want $\langle f, \mu_{\mathbb{Q}}
 angle_{\mathcal{H}} pprox \langle f, \mu_{\mathbb{P}}
 angle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
 - Error $\leq \|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P},\mathbb{Q})$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}:\mathbb{E}\,f(X)pproxrac{1}{n}\sum_j f(Y_j)$ for all f
 - Letting $\mathbb{Q} = \frac{1}{T} \sum_{j=1}^T \delta_{Y_j}$, want $\langle f, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \approx \langle f, \mu_{\mathbb{P}} \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
 - Error $\leq \|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P},\mathbb{Q})$
- Greedily minimize the MMD:

$$egin{aligned} & Y_{T+1} \in rgmin_{Y \in \mathcal{X}} \mathbb{E}_{X' \sim \mathbb{P}} \ k(Y, X') - rac{1}{T+1} \sum_{j=1}^T k(Y, Y_j) \end{aligned}$$

Application: Kernel Herding

- Want a "super-sample" from $\mathbb{P}:\mathbb{E}\,f(X)pproxrac{1}{n}\sum_j f(Y_j)$ for all f
 - Letting $\mathbb{Q} = rac{1}{T} \sum_{j=1}^T \delta_{Y_j}$, want $\langle f, \mu_{\mathbb{Q}}
 angle_{\mathcal{H}} pprox \langle f, \mu_{\mathbb{P}}
 angle_{\mathcal{H}}$ for all $f \in \mathcal{H}$
 - Error $\leq \|f\|_{\mathcal{H}} \operatorname{MMD}(\mathbb{P},\mathbb{Q})$
- Greedily minimize the MMD:

$$egin{aligned} & Y_{T+1} \in rgmin_{Y \in \mathcal{X}} \mathbb{E}_{X' \sim \mathbb{P}} \ k(Y, X') - rac{1}{T+1} \sum_{j=1}^T k(Y, Y_j) \end{aligned}$$

- Get $\mathcal{O}(1/T)$ approximation instead of $\mathcal{O}(1/\sqrt{T})$ with random samples

 $\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \langle \mu_{\mathbb{P}},\mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \mathbb{E}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X') - 2k(X,Y) + k(Y,Y')
ight] \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \langle \mu_{\mathbb{P}},\mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \mathbb{E}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X') - 2k(X,Y) + k(Y,Y')
ight] \end{aligned}$$

 $\widehat{\mathrm{MMD}}_k^2(X, Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \langle \mu_{\mathbb{P}},\mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \mathbb{E}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X') - 2k(X,Y) + k(Y,Y')
ight] \ &= \sum_{\substack{Y,Y'\sim\mathbb{Q}}} 2 \end{aligned}$$

 $\tilde{\mathrm{MMD}}_{k}(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \langle \mu_{\mathbb{P}},\mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \mathbb{E}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X') - 2k(X,Y) + k(Y,Y')
ight] \ &\stackrel{\frown}{\longrightarrow} 2 \ &\stackrel{\frown}{\longrightarrow} 2 \ &\stackrel{\frown}{\longrightarrow} 2 \ &\stackrel{\frown}{\longrightarrow} 2 \ &\stackrel{\frown}{\longrightarrow} \$$

 $MMD_k(X, Y) = mean(K_{XX}) + mean(K_{YY}) - 2 mean(K_{XY})$

 K_{XX}

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \langle \mu_{\mathbb{P}},\mu_{\mathbb{P}}
angle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}},\mu_{\mathbb{Q}}
angle_{\mathcal{H}} \ &= \mathbb{E}_{\substack{X,X'\sim\mathbb{P}\Y,Y'\sim\mathbb{Q}}} \left[k(X,X') - 2k(X,Y) + k(Y,Y')
ight] \ & \widehat{\mathrm{MMD}}_{k}^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2\,\mathrm{mean}(K_{XY}) \end{aligned}$$

 K_{XX}

 K_{YY}

- MMD has easy $\mathcal{O}(n^2)$ estimator
 - *block* or *incomplete* estimators are $\mathcal{O}(n^{lpha})$ for $lpha \in [1,2]$, but noisier

- MMD has easy $\mathcal{O}(n^2)$ estimator
 - *block* or *incomplete* estimators are $\mathcal{O}(n^{lpha})$ for $lpha \in [1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_p(1/\sqrt{n})$ estimation error

- MMD has easy $\mathcal{O}(n^2)$ estimator
 - *block* or *incomplete* estimators are $\mathcal{O}(n^{lpha})$ for $lpha \in [1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_p(1/\sqrt{n})$ estimation error
 - Independent of data dimension!

- MMD has easy $\mathcal{O}(n^2)$ estimator
 - *block* or *incomplete* estimators are $\mathcal{O}(n^lpha)$ for $lpha \in [1,2]$, but noisier
- For bounded kernel, $\mathcal{O}_p(1/\sqrt{n})$ estimation error
 - Independent of data dimension!
 - But, no free lunch...the value of the MMD generally shrinks with growing dimension, so constant $\mathcal{O}_p(1/\sqrt{n})$ error gets worse relatively

GP view of MMD

$$egin{aligned} \mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) &= \left(\sup_{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} \, f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} \, f(Y)
ight)^2 \ &= \mathrm{Var}_{f \sim \mathcal{GP}(0,k)} [\mathbb{E}_{X \sim \mathbb{P}} \, f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} \, f(Y)] \end{aligned}$$

GP view of MMD

$$egin{aligned} \mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) &= \left(\sup_{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)
ight)^2 \ &= \mathrm{Var}_{f \sim \mathcal{GP}(0,k)} [\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)] \end{aligned}$$

• Optimizing the gap in $\mathcal{H} \leftrightarrow$ average-case gap sampled from GP

GP view of MMD

$$egin{aligned} \mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) &= \left(\sup_{f:\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}} \, f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} \, f(Y)
ight)^2 \ &= \mathrm{Var}_{f \sim \mathcal{GP}(0,k)} [\mathbb{E}_{X \sim \mathbb{P}} \, f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} \, f(Y)] \end{aligned}$$

- Optimizing the gap in $\mathcal{H} \leftrightarrow$ average-case gap sampled from GP
- Six-line proof [Kanagawa+ 18, Proposition 6.1]

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

• Given samples from two unknown distributions

 $X\sim \mathbb{P} \qquad Y\sim \mathbb{O}$

• Do smokers/non-smokers get different cancers?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?

• Given samples from two unknown distributions

$X \sim \mathbb{P}$ $Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?

• Given samples from two unknown distributions

$X \sim \mathbb{P}$ $Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?

• Given samples from two unknown distributions

$X \sim \mathbb{P}$ $Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]

• Given samples from two unknown distributions

X ~ P Y ~ () Do smokers/non-smokers get different cancers?

- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?

• Given samples from two unknown distributions

• Do smokers/non-smokers get different cancers?

- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match \mathbb{P}_{data} ?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

$$H_0:\mathbb{P}=\mathbb{Q} \qquad H_1:\mathbb{P}
eq \mathbb{Q}$$

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

 $H_0:\mathbb{P}=\mathbb{Q} \qquad H_1:\mathbb{P}
eq \mathbb{Q}$

• Reject $\widehat{H_0}$ if $\widehat{\mathrm{MMD}}(X,Y) > c_lpha$

MMD-based testing

• $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something • Infinite mixture of χ^2 s, params depend on $\mathbb P$ and k

MMD-based testing

- $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something
 - Infinite mixture of χ^2 s, params depend on \mathbb{P} and k
 - Can estimate threshold with *permutation testing*

MMD-based testing

- $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something
 - Infinite mixture of χ^2 s, params depend on \mathbb{P} and k
 - Can estimate threshold with *permutation testing*
- $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2) \overset{d}{\rightarrow}$ asymptotically normal

MMD-based testing

- $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something
 - Infinite mixture of χ^2 s, params depend on \mathbb{P} and k
 - Can estimate threshold with *permutation testing*

•
$$H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}^2) \overset{d}{
ightarrow}$$
 asymptotically normal

• Any characteristic kernel gives consistent test

MMD-based testing

- $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something
 - Infinite mixture of χ^2 s, params depend on \mathbb{P} and k
 - Can estimate threshold with *permutation testing*

•
$$H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}^2) \stackrel{d}{
ightarrow}$$
 asymptotically normal

• Any characteristic kernel gives consistent test...eventually

MMD-based testing

- $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution to...something
 - Infinite mixture of χ^2 s, params depend on \mathbb{P} and k
 - Can estimate threshold with *permutation testing*

•
$$H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}^2) \overset{d}{
ightarrow}$$
 asymptotically normal

- Any characteristic kernel gives consistent test...eventually
- Need enormous n if kernel is bad for problem

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$
- With $k(x,y)=rac{1}{4}f(x)f(y)$ where $f(x)\in\{-1,1\}$, get $\widehat{\mathrm{MMD}}(X,Y)=\left|\hat{T}(X,Y)-rac{1}{2}
 ight|$

• $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of *deep kernel*

- $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_{\psi}(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$

- $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_{\psi}(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$
- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$

- $k(x,y)=rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_\psi(x)$
 - With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$
- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$
 - Same idea as NNGP approximation

- $k(x,y) = rac{1}{4}f(x)f(y)$ is one form of deep kernel
- Deep models are usually of the form $f(x) = w^{\mathsf{T}} \phi_{\psi}(x)$

• With a learned $\phi_\psi(x):\mathcal{X} o\mathbb{R}^D$

- If we fix ψ , have $f\in \mathcal{H}_\psi$ with $k_\psi(x,y)=\phi_\psi(x)^{\sf T}\phi_\psi(y)$
 - Same idea as NNGP approximation
- Generalize to a **deep kernel**:

$$k_\psi(x,y) = \kappa\left(\phi_\psi(x),\phi_\psi(y)
ight)$$

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y)$$

• Final function in \mathcal{H}_ψ will be $af_\psi(x)$

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y) + 1$$

• Final function in
$$\mathcal{H}_\psi$$
 will be $af_\psi(x)+b$

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y) + 1$$

- Final function in \mathcal{H}_ψ will be $af_\psi(x)+b$
- With logistic loss: this is Platt scaling

• Take
$$k_\psi(x,y) = rac{1}{4} f_\psi(x) f_\psi(y) + 1$$

- Final function in \mathcal{H}_ψ will be $af_\psi(x)+b$
- With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo^{*1} **Geoff Pleiss**^{*1} **Yu Sun**^{*1} **Kilian Q. Weinberger**¹

• This does *not* say that deep learning is (even approximately) a kernel method

- This does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]

Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

- This does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning [Submitted on 30 Nov 2020] Every Model Learned by Gradient Descent Is Approximately a Kernel Machine Pedro Domingos

• We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]

- This does *not* say that deep learning is (even approximately) a kernel method
- ...despite what some people might want you to think

Computer Science > Machine Learning [Submitted on 30 Nov 2020] Every Model Learned by Gradient Descent Is Approximately a Kernel Machine Pedro Domingos

- We know theoretically deep learning can learn some things faster than any kernel method [see Malach+ ICML-21 + refs]
- But deep kernel learning ≠ traditional kernel models
 - exactly like how usual deep learning ≠ linear models

• Asymptotics of $\widehat{\mathrm{MMD}}^2$ give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term usually dominates

• Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_1}$ from U-statistic theory

• Asymptotics of $\widehat{\mathrm{MMD}}^2$ give us immediately that

$$\Pr_{H_1}\left(\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_1}$ from U-statistic theory

• Can show uniform
$$\mathcal{O}_P(n^{-rac{1}{3}})$$
 convergence of estimator

- Asymptotics of \widehat{MMD}^2 give us immediately that

$$\Pr_{H_1}\left(\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Use $\widehat{\mathrm{MMD}}$ from before, get $\hat{\sigma}_{H_1}$ from U-statistic theory
- Can show uniform $\mathcal{O}_P(n^{-\frac{1}{3}})$ convergence of estimator
- Get better tests (even after data splitting)

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}
 - Minimize estimate of $\operatorname{MMD}\psi(\mathbb{P}^m,\mathbb{Q}^n_{\theta})$ on a minibatch

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}
 - Minimize estimate of $\operatorname{MMD}\psi(\mathbb{P}^m,\mathbb{Q}^n_{\theta})$ on a minibatch
- MMD GAN: $\min_{\theta} [\max_{\psi} MMD_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta})]$

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}
 - Minimize estimate of $\operatorname{MMD}\psi(\mathbb{P}^m,\mathbb{Q}^n_{\theta})$ on a minibatch
- MMD GAN: $\min_{\theta} [\max_{\psi} \operatorname{MMD}_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta})]$
- SMMD GAN: $\min_{\theta} \left[\max_{\psi} \operatorname{SMMD}_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta}) \right]$
 - Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}
 - Minimize estimate of $\operatorname{MMD}\psi(\mathbb{P}^m,\mathbb{Q}^n_{\theta})$ on a minibatch
- MMD GAN: $\min_{\theta} [\max_{\psi} \operatorname{MMD}_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta})]$
- SMMD GAN: $\min_{\theta} \left[\max_{\psi} \operatorname{SMMD}_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta}) \right]$
 - Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]

• Uses
$$\langle f, \partial_{x_1} k(x, \cdot)
angle_{\mathcal{H}} = \partial_{x_1} f(x)$$

- An implicit generative model:
 - A generator net outputs samples from \mathbb{Q}_{θ}
 - Minimize estimate of $\operatorname{MMD}\psi(\mathbb{P}^m,\mathbb{Q}^n_{\theta})$ on a minibatch
- MMD GAN: $\min_{\theta} [\max_{\psi} \operatorname{MMD}_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta})]$
- SMMD GAN: $\min_{\theta} [\max_{\psi} SMMD_{\psi}(\mathbb{P}, \mathbb{Q}_{\theta})]$
 - Scaled MMD uses kernel properties to ensure smooth loss for θ by making witness function smooth [Arbel+ NeurIPS-18]
 - Uses $\langle f, \partial_{x_1} k(x, \cdot)
 angle_{\mathcal{H}} = \partial_{x_1} f(x)$
 - Standard WGAN-GP better thought of in kernel framework

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
 - We can tell whether an applicant is "creditworthy"
 - We can't distinguish applicants by race

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
 - We can tell whether an applicant is "creditworthy"
 - We can't distinguish applicants by race
- Find a good classifier with near-zero test power for race

Application: fair representation learning (MMD-B-FAIR) [Deka/Sutherland AISTATS-23]

- Want to find a representation where
 - We can tell whether an applicant is "creditworthy"
 - We can't distinguish applicants by race
- Find a good classifier with near-zero test power for race
- *Minimizing* the test power criterion turns out to be hard
 - Workaround: minimize test power of a (theoretical) *block* test

Application: distribution regression/classification/...

• We can define a kernel on distributions by, e.g.,

$$k(\mathbb{P},\mathbb{Q}) = \expigg(-rac{1}{2\sigma^2}\mathrm{MMD}^2(\mathbb{P},\mathbb{Q})igg)$$

• Some pointers:

[Muandet+ NeurIPS-12] [Sutherland 2016] [Szabó+ JMLR-16]

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate $\mu_{\mathbb{P}}$ uncertainty

• $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X), g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in\mathcal{H}_x$, $g\in\mathcal{H}_y$:

 $\mathbb{E}[f(X)]\mathbb{E}[g(Y)]$

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in\mathcal{H}_x$, $g\in\mathcal{H}_y$:

 $\mathbb{E}[f(X)] \mathbb{E}[g(Y)] = \langle f, \mu_{\mathbb{P}}
angle_{\mathcal{H}_x} \langle \mu_{\mathbb{Q}}, g
angle_{\mathcal{H}_y}$

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in\mathcal{H}_x$, $g\in\mathcal{H}_y$:

 $\mathbb{E}[f(X)] \mathbb{E}[g(Y)] = \langle f, \mu_{\mathbb{P}}
angle_{\mathcal{H}_x} \langle \mu_{\mathbb{Q}}, g
angle_{\mathcal{H}_y} \ = \langle f, (\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}})g
angle_{\mathcal{H}_x}$

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in \mathcal{H}_x$, $g\in \mathcal{H}_y$:

 $egin{aligned} \mathbb{E}[f(X)] \, \mathbb{E}[g(Y)] &= \langle f, \mu_{\mathbb{P}}
angle_{\mathcal{H}_x} \langle \mu_{\mathbb{Q}}, g
angle_{\mathcal{H}_y} \ &= \langle f, (\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}})g
angle_{\mathcal{H}_x} \ \mathbb{E}[f(X)g(Y)] \end{aligned}$

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in\mathcal{H}_x$, $g\in\mathcal{H}_y$:

 $\mathbb{E}[f(X)] \mathbb{E}[g(Y)] = \langle f, \mu_{\mathbb{P}} \rangle_{\mathcal{H}_{x}} \langle \mu_{\mathbb{Q}}, g \rangle_{\mathcal{H}_{y}} \\ = \langle f, (\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}})g \rangle_{\mathcal{H}_{x}} \\ \mathbb{E}[f(X)g(Y)] = \mathbb{E}[\langle f, k_{x}(X, \cdot) \rangle_{\mathcal{H}_{x}} \langle k_{y}(Y, \cdot), g \rangle_{\mathcal{H}_{y}}]$

- $X \! \perp \!\!\!\perp Y$ iff $\operatorname{Cov}(f(X),g(Y)) = 0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in\mathcal{H}_x$, $g\in\mathcal{H}_y$:

 $egin{aligned} \mathbb{E}[f(X)] \, \mathbb{E}[g(Y)] &= \langle f, \mu_{\mathbb{P}}
angle_{\mathcal{H}_x} \langle \mu_{\mathbb{Q}}, g
angle_{\mathcal{H}_y} \ &= \langle f, (\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}) g
angle_{\mathcal{H}_x} \ \mathbb{E}[f(X)g(Y)] &= \mathbb{E}[\langle f, k_x(X, \cdot)
angle_{\mathcal{H}_x} \langle k_y(Y, \cdot), g
angle_{\mathcal{H}_y}] \ &= \langle f, \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \, g
angle_{\mathcal{H}_x} \end{aligned}$

- $X {\perp\!\!\!\perp} Y$ iff $\operatorname{Cov}(f(X),g(Y))=0$ for all square-integrable f, g
- Let's implement for RKHS functions $f\in \mathcal{H}_x$, $g\in \mathcal{H}_y$:

 $egin{aligned} \mathbb{E}[f(X)] & \mathbb{E}[g(Y)] = \langle f, \mu_{\mathbb{P}}
angle_{\mathcal{H}_x} \langle \mu_{\mathbb{Q}}, g
angle_{\mathcal{H}_y} \ &= \langle f, (\mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}})g
angle_{\mathcal{H}_x} \ & \mathbb{E}[f(X)g(Y)] = \mathbb{E}[\langle f, k_x(X, \cdot)
angle_{\mathcal{H}_x} \langle k_y(Y, \cdot), g
angle_{\mathcal{H}_y}] \ &= \langle f, \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \, g
angle_{\mathcal{H}_x} \ & \mathrm{Cov}(f(X), g(Y)) = \langle f, C_{XY}g
angle_{\mathcal{H}_x} \end{aligned}$

where $C_{XY}:\mathcal{H}_y
ightarrow\mathcal{H}_x$ is

 $\mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)]-\mathbb{E}[k_x(X,\cdot)]\otimes \mathbb{E}[k_y(Y,\cdot)]$

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_{\mathbb{P}} \otimes \mu_{\mathbb{Q}}$

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_\mathbb{P} \otimes \mu_\mathbb{Q}$
- If $X \!\!\perp\!\!\!\perp Y$, then $C_{XY} = 0$

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_\mathbb{P} \otimes \mu_\mathbb{Q}$
- If $X \!\!\perp\!\!\!\perp Y$, then $C_{XY} = 0$
- If $C_{XY}=0$, $\operatorname{Cov}(f(X),g(Y))=0$ $\forall f\in \mathcal{H}_x,g\in \mathcal{H}_y$

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_\mathbb{P} \otimes \mu_\mathbb{Q}$
- If $X \!\!\perp\!\!\!\perp Y$, then $C_{XY} = 0$
- If $C_{XY}=0$, $\operatorname{Cov}(f(X),g(Y))=0$ $\forall f\in\mathcal{H}_x,g\in\mathcal{H}_y$
- If k_x , k_y are characteristic:
 - $C_{XY} = 0$ implies $X \! \perp \!\!\! \perp \!\!\! Y$ [Szabó/Sriperumbudur JMLR-18]

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_\mathbb{P} \otimes \mu_\mathbb{Q}$
- If $X \!\!\perp\!\!\!\perp Y$, then $C_{XY} = 0$
- If $C_{XY}=0$, $\operatorname{Cov}(f(X),g(Y))=0 \quad orall f \in \mathcal{H}_x, g \in \mathcal{H}_y$
- If k_x , k_y are characteristic:
 - $C_{XY} = 0$ implies $X \! \perp \!\!\! \perp \!\!\! Y$ [Szabó/Sriperumbudur JMLR-18]

- $\operatorname{Cov}(f(X), g(Y)) = \langle f, C_{XY}g \rangle_{\mathcal{H}_x}$
- $C_{XY} = \mathbb{E}[k_x(X, \cdot) \otimes k_y(Y, \cdot)] \mu_\mathbb{P} \otimes \mu_\mathbb{Q}$
- If $X \!\!\perp\!\!\!\perp Y$, then $C_{XY} = 0$
- If $C_{XY}=0$, $\operatorname{Cov}(f(X),g(Y))=0$ $\forall f\in \mathcal{H}_x,g\in \mathcal{H}_y$
- If k_x , k_y are characteristic:
 - $C_{XY} = 0$ implies $X \! \perp \!\!\! \perp \!\!\! Y$ [Szabó/Sriperumbudur JMLR-18]

 - $X \perp\!\!\!\perp Y$ iff $0 = \|C_{XY}\|_{\mathrm{HS}}^2$ (sum squared singular values) \circ HSIC: "Hilbert-Schmidt Independence Criterion"

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)] - \mu_\mathbb{P}\otimes \mu_\mathbb{Q} \ &\|C_{XY}\|_{\mathrm{HS}}^2 = \|\mu_{\mathbb{P}_{XY}} - \mu_\mathbb{P}\otimes \mu_\mathbb{Q}\|_{\mathcal{H}_x\otimes\mathcal{H}_y}^2 \end{aligned}$$

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)] - \mu_\mathbb{P}\otimes \mu_\mathbb{Q} \ \|C_{XY}\|_{\mathrm{HS}}^2 &= \|\mu_{\mathbb{P}_{XY}} - \mu_\mathbb{P}\otimes \mu_\mathbb{Q}\|_{\mathcal{H}_x\otimes\mathcal{H}_y}^2 \ &= \mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P} imes\mathbb{Q})^2 \end{aligned}$$

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)]-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\ &\|C_{XY}\|^2_{\mathrm{HS}} = \|\mu_{\mathbb{P}_{XY}}-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\|^2_{\mathcal{H}_x\otimes\mathcal{H}_y}\ &= \mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P} imes\mathbb{Q})^2\ &= \mathbb{E}[k_x(X,X')k_y(Y,Y')]\ &-2\,\mathbb{E}[k_x(X,X')k_x(Y,Y'')]\ &+ \mathbb{E}[k_x(X,X')]\,\mathbb{E}[k_y(Y,Y')] \end{aligned}$$

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)]-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\ &\|C_{XY}\|^2_{\mathrm{HS}} = \|\mu_{\mathbb{P}_{XY}}-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\|^2_{\mathcal{H}_x\otimes\mathcal{H}_y}\ &=\mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P} imes\mathbb{Q})^2\ &=\mathbb{E}[k_x(X,X')k_y(Y,Y')]\ &-2\,\mathbb{E}[k_x(X,X')k_x(Y,Y'')]\ &+\mathbb{E}[k_x(X,X')]\,\mathbb{E}[k_y(Y,Y')] \end{aligned}$$

• Linear case: C_{XY} is cross-covariance matrix, HSIC is squared Frobenius norm

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)]-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\ \|C_{XY}\|^2_{\mathrm{HS}} &= \|\mu_{\mathbb{P}_{XY}}-\mu_\mathbb{P}\otimes \mu_\mathbb{Q}\|^2_{\mathcal{H}_x\otimes\mathcal{H}_y}\ &= \mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P} imes\mathbb{Q})^2\ &= \mathbb{E}[k_x(X,X')k_y(Y,Y')]\ &-2\,\mathbb{E}[k_x(X,X')k_x(Y,Y'')]\ &+ \mathbb{E}[k_x(X,X')]\,\mathbb{E}[k_y(Y,Y')] \end{aligned}$$

- Linear case: C_{XY} is cross-covariance matrix, HSIC is squared Frobenius norm
- Default estimator (biased, but simple): $\langle HK_XH, K_Y
 angle_F$, $H=I-\mathbf{1}\mathbf{1}^{\mathsf{T}}$

$$egin{aligned} C_{XY} &= \mathbb{E}[k_x(X,\cdot)\otimes k_y(Y,\cdot)]-\mu_{\mathbb{P}}\otimes \mu_{\mathbb{Q}}\ &|C_{XY}||^2_{\mathrm{HS}} = \|\mu_{\mathbb{P}_{XY}}-\mu_{\mathbb{P}}\otimes \mu_{\mathbb{Q}}\|^2_{\mathcal{H}_x\otimes\mathcal{H}_y}\ &= \mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P} imes\mathbb{Q})^2\ &= \mathbb{E}[k_x(X,X')k_y(Y,Y')]\ &-2\,\mathbb{E}[k_x(X,X')k_x(Y,Y'')]\ &+\mathbb{E}[k_x(X,X')]\,\mathbb{E}[k_y(Y,Y')]\ &= \mathbb{E}_{f\sim\mathcal{GP}(0,k_x)}\left[\mathrm{Cov}(f(X),g(Y))^2
ight] \end{aligned}$$

- Linear case: C_{XY} is cross-covariance matrix, HSIC is squared Frobenius norm
- Default estimator (biased, but simple): $\langle HK_XH, K_Y
 angle_F$, $H=I-\mathbf{1}\mathbf{1}^{\mathsf{T}}$

HSIC applications

- Independence testing [Gretton+ NeurIPS-07]
- Clustering [Song+ ICML-07]
- Feature selection [Song+ JMLR-12]
- HSIC Bottleneck: alternative to backprop [Ma+ AAAI-20]
 - biologically plausible(ish) [Pogodin+ NeurIPS-20]
 - more robust [Wang+ NeurIPS-21]
- Self-supervised learning [Li+ NeurIPS-21]
 - maybe better explanation of why InfoNCE/etc work
- •
- Broadly: easier-to-estimate, sometimes-nicer version of mutual information

Example: SSL-HSIC [Li+ NeurIPS-21]

- Maximizes dependence between image features $m{f}$ and its identity on a minibatch
- Using a learned deep kernel based on *g*

Recap

- Point embedding $k(X,\cdot)$: if $f\in \mathcal{H}$ then $\langle f,\mu_\mathbb{P}
 angle_{\mathcal{H}}=\mathbb{E}_{X\sim\mathbb{P}}\,f(X)$
- Mean embedding $\mu_\mathbb{P}=\mathbb{E}\,k(X,\cdot)$: if $f\in\mathcal{H}$ then $\langle f,\mu_\mathbb{P}
 angle_\mathcal{H}=\mathbb{E}_{X\sim\mathbb{P}}\,f(X)$
- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ is 0 iff $\mathbb{P} = \mathbb{Q}$ (for characteristic kernels)
- $\mathrm{HSIC}(X,Y) = \|C_{XY}\|_{\mathrm{HS}} = \mathrm{MMD}(\mathbb{P}_{XY},\mathbb{P}\times\mathbb{Q})^2$ is 0 iff $X \perp \!\!\!\perp Y$ (for characteristic k_x , k_y ...or slightly weaker)
- Often need to learn a kernel for good performance on complicated data
 Can often do end-to-end for downstream loss, asymptotic test power, ...

More resources

- Berlinet and Thomas-Agnan, *RKHS in Probability and Statistics* kernels in general + mean embedding basics
- Steinwart and Christmann, *Support Vector Machines* kernels in general, learning theory
- Course slides by Julien Mairal + Jean-Philippe Vert
 kernels in general, learning theory
- Course materials by Arthur Gretton
 - kernels in general, mean embeddings, MMD/HSIC
- Connections to Gaussian processes [Kanagawa+ 'GPs and Kernel Methods' 2018]
- Mean embeddings: survey [Muandet+ 'Kernel Mean Embedding of Distributions']
- These slides are at djsutherland.ml/slides/like23