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Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w' (1,z,2%) = w' ¢(=)
Kernels are basically a way to study doing this

with any, potentially very complicated, ¢

Convenient way to make models on documents, graphs, videos, datasets,
probability distributions, ...

¢ will live in a reproducing kernel Hilbert space
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Hilbert spaces
e A complete (real erecofmptex) inner product space

e |nner product space: a vector space with an inner product:
" <a1f1 =+ a2f2ag>'H — <flag>7-l + a2<f2ag>7-t

. <fag>'H — <gaf>’H
. <f7f>'H >Oforf7é0' <070>'H =0

Induces a norm: || ||y = /{f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)
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Kernel: an inner product between feature maps

e Call our domain X, some set
= RY, functions, distributions of graphs of images, ...

e k: X x X — Risakernel on X if there exists a Hilbert space H and a
feature map ¢ : X — H so that

k(z,y) = (o(z), d(y))n

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on R%: k(z,y) = <a3,y>Rd
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e Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
e Exactly the same: GP covariance function

e Semi-related: kernel density estimation
n kX X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel
= Often requires k(x,y) > 0, unlike RKHS kernel

= Not required to be inner product, unlike RKHS kernel
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Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

Aside: the name “kernel”

Exactly the same: GP covariance function

Semi-related: kernel density estimation

Unrelated:

The kernel (null space) of a linear map

The kernel of a probability density

The kernel of a convolution
CUDA kernels
The Linux kernel

Popcorn kernels



Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel



Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %



Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %
e Sum: ki (x,y) = k1(x,y) + ko (x,y) is a kernel



Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
= ky(z,y) =v(0(2), 6(¥) 5 = (VAP(2), /TD(¥)) %

e Sum:ky(z,y) = k1(z,y) + ko (x, y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2




Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
= ky(z,y) =v(0(2), 6(¥) 5 = (VAP(2), /TD(¥)) %

e Sum:ky(z,y) = k1(z,y) + ko (x, y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2

e Iski(x,y) — k2(x,y) necessarily a kernel?




Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(x,y) is a kernel
" ky(z,y) = v{d(z), d(y)n = (VFP(2), /TP(Y)) %
e Sum: ki (x,y) = k1(x,y) + ko (x,y) is a kernel

- [ei(x)] [é1(y)
k+ (w,y) — < _¢2 (a;)_ ’ _¢2(y)- >H1€BH2

e Iski(x,y) — k2(x,y) necessarily a kernel?
= Take k1 (x,y) =0, ka(z,y) = xy, x # 0.

» Then ki (z,z) — ko(z,z) = —2% < 0
+ Buth(z, 2) = |$(a)[3, > 0.
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Positive definiteness
o Asymmetric functionk: X X X - R e k(z,y) = k(y, x)

IS positive semi-definite
ifforalln > 1, (a1,...,a,) € R", (z1,...,2,) € X",

n n
S: S: a,z-ajk(a:z-, il?j) >0
i=1 j=1
e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this
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e Recall original motivating example with
X =R o(z) = (1,z,z°) € R
» Kernelis k(z,y) = (¢(), d(y))u = 1 + zy + z°y’

e Classifier based on linear f(a?) = <w, ¢($)>’H

e f(-)is the function f itself; corresponds to vector w in R*
f(x) € Ris the function evaluated at a point x

e Elements of H are functions, f : X — R
 Reproducing property: f(x) = (f(-), ¢(x))y for f € H
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Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space, its RKHS H,
and amap ¢ : X — H where

= k(z,y) = (o(z), &(y))n

= Elements f € H are functions on X, with f(z) = (f, ¢(x))%
e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)| < M| £l
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,-) : x € X'})

= Define (-, -)g, from (k(z,-), k(y, ))n, = k(x,y)
= Take H to be completion of Hg in the metric from (-, +) 3,

= Get that the reproducing property holds for k(a:, ) in H

= Can also show unigueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS
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A quick check: linear kernels

k(z,y) =z "yon X =R?

i £(y

» k(z,-) = [y — 'y “corresponds to”" x

Zaz xzay thEﬂ f( ) [Zz 1a’ZwZ]Ty

Closure doesn't add anything here, since R% is closed

So,

I f]

inear kernel gives you RKHS of linear functions

"= \/Z?zl i1 aiajk(zi, i) = 1221 aizil]
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More complicated: Gaussian kernels
k(z,y) = exp(5 [lz — yI*)

e H is infinite-dimensional
e Functions in H are bounded

f(x) = (f, k(@ ))n < v/E(@, )| flln = [ £l

e Choice of o controls how fast functions can vary:
fl@+t) = f(z) < [[k(z+1t,) — k(@) la]| fll
2
\k(z +t,-) — k(z,)[2, = 2 — 2k(z,z + 1) =2 — 2exp( il )

O'

e Can say lots more with Fourier properties
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f = argmin 1 Z(f(wz) — )" + Al £l

fe M3
Linear kernel gives normal ridge regression:

A R ) 1 n
f@)=v"2; d=argmin= ) (w'z;— )+ A|w|’
weR? n 1=1

Nonlinear kernels will give nonlinear regression!
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Kernel ridge regression

f = argmin = 3 (@) —)? + Al fIE
fen N3
How to find f? Representer Theorem
e Let Hx = span{k(x;,-)}_,, and H its orthogonal complement in H
e Decompose f = fx + fiL with fx € Hx, f1 € H,
* f(@i) = (Fx + i, k(@is))n = (fx, k(@i, ) n
o [1£113 = Il fx I3 + I fll%

e Minimizer needs f; = 0, and sof - Z?:l a;k(z;, -)
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Kernel ridge regression

f = argmin 1 Z(f(wz) — )" + Al £l

fen N3

How to find f? Representer Theorem: f = Z?zl a;k(z;, -)

& =argmina' K?a—2y" Ka+y'y+ nla' Ka

acR"

— argmina' K(K 4+ n\)a —2y' Ko

acR"

Setting derivative to zero gives K (K 4+ nAl)a = Ky,
satisfied by & = (K + nAI) 1y
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Kernel ridge regression and GP regression
Compare to regression with GP(0, k) prior, N'(0, o) observation noise

If we take A = o /m, KRR is exactly the GP regression posterior mean

Note that GP posterior samples are not in H, but are in a slightly bigger RKHS
Also a connection between posterior variance and KRR worst-case error
For many more details:

Gaussian Processes and Kernel Methods:
A Review on Connections and Equivalences

Motonobu Kanagawa!, Philipp Hennig!,

Dino Sejdinovic?, and Bharath K Sriperumbudur?


https://arxiv.org/abs/1807.02582
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Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(z1), -+, f(zn)) + R(|| flln)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis
Many, many more...

But not everything works...e.g. Lasso ||w||1 regularizer
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Some very very quick theory

e Generalization: how close is my training set error to the population error?
» Say k(z,x) < 1, consider {f € H : || f||% < B}, p-Lipschitz loss

: : _ 2pB
= Rademacher argument implies expected overfitting < %

= |f “truth” has low RKHS norm, can learn efficiently

e Approximation: how big is RKHS norm of target function?
= For universal kernels, can approximate any target with finite norm

= Gaussian is universal L.  (nothing finite-dimensional can be)

= But “finite” can be really really really big
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Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3y — Bxy7 for large d

e Provably statistically slower than deep learning for a few problems
= e.g. to learn a single ReLU, max (0, ’wTa:), need norm exponential in d
[Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

= Generally apply to learning with any fixed kernel

e O(n?) computational complexity, O(n?) memory
= Various approximations you can make


https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Part II: (Deep) Kernel Mean Embeddings
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Mean embeddings of distributions
Represent pointz € X as k(z,-):  f(x) = (f, k(x,-))xn
Represent distribution P as up:  Exp f(X) = (f, up)x
IE‘:XNIP’ f(X) — ]EXN]P’ <f7 k(Xa )>'H — <f7 EXNIP’ k(X7 )>’H

N ——’
Hp

= Last step assumed E /k(X, X) < 00 (Bochner integrability)

(e s 10)n = Exopyan kX, V)

Okay. Why?
= One reason: ML on distributions [Szabd+ JMLR-16]

= More common reason: comparing distributions


https://arxiv.org/abs/1411.2066
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= sup (f,ur — Lo)n
[£ll4 <1

— Hfsnug1 Exp f(X) — Eyo f(Y)

e Lastline is Integral Probability Metric (IPM) form
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MMD properties
MMD(P, Q) = [[up — polln

MMD(P, P) = 0, symmetry, triangle inequality

If k is characteristic, then MMD(IP, Q) = 0 iff P =
n j.e. P — up isinjective
= Makes MMD a metric on probability distributions
= Universal = characteristic

If we use a linear kernel:
= MMD(P, Q) = ||up — 1o ||% just Euclidean distance between means

If we use k(x,y) = d(x,0) + d(y,0) — d(z,y),

the squared MMD becomes the energy distance [Sejdinovic+ Annals-13]


https://arxiv.org/abs/1207.6076
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Application: Kernel Herding
e Want a "super-sample" from P: E f(X) ~ %ZJ f(Y;) forall f
s Letting ) = %Zle Oy, want {(f, no)u =~ (f, up)3 forall f € H
= Error < || f|lx MMD(P, Q)
e Greedily minimize the MMD:

T
c argminEy_p k(Y, X') yk( , V)
¥ T+1%

J

e Get O(1/T) approximation instead of O(1/+/T) with random samples



orall f
| f)# forall f € H

e Want a "super-{ .|

n Letting ()

= Error < ||| °

e Greedily minim| _,|

Yri €

k(YY)

e Get O(1/T) a

ndom samples

Figure 1: First 20 samples form herding (red squares) ver-
sus i.i.d. random sampling (purple circles).
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Estimating MMD from samples

MMD%(]P’, ) = (up, pp)n — 2{up, Lo)n + (Lo, 1Lo)x
=F x xop [K(X, X") — 2k(X, V) + k(V, V)]

~J
Y

MMD, (X,Y) = mean(K xx) + mean(Kyy ) — 2mean (K xy)

--IYY 1.0
& 1.0 H0
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MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € (1, 2], but noisier

e For bounded kernel, O,(1/4/n) estimation error
= |[ndependent of data dimension!

= But, no free lunch...the value of the MMD generally shrinks with growing
dimension, so constant O, (1/4/n) error gets worse relatively



MMD vs other distances

° MMD haS s\ {/){,Y,Z\ actimator

m plock or ir

e For boundec
= |ndepend

s But, no fr
dimensio

\o‘eg'a‘ prob. met"iq,

wasserstein Hellinger

KL

o (52}

Pearson chi?®

-D'H(P'.'Q)
= sup [Ex.pg(X) — Ey.qg(Y)
geEH

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)
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GP view of MMD

2
MMD? (P, Q) = (f.SfU-P<1EX~IP’ f(X) — Ey~o f( ))

— Varngp(o,k) [EXNIP’ f(X) o EY” f( )]

e Optimizing the gap in H <> average-case gap sampled from GP

e Six-line proof [Kanagawa+ 18, Proposition 6.1]


https://arxiv.org/abs/1807.02582
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Application: Two-sample testing

e Given samples from two unknown distributions

i m——

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]
Do these dob and birthday columns mean the same thing?

Does my generative model match Pg.:5?



http://bioconductor.org/packages/release/bioc/html/MMDiff2.html

Application: Two-sample testing
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X ~P ~

e Question:is P = ()?
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Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is P = ()?

e Hypothesis testing approach:

H():IP): Hlip#

e Reject H ifM/l\ﬁ)(X, ) > cq
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don't reject Hy Cq4

probability density

What's a hypothesis test again?

reject Hy (say P#Q)

—_— P=0
— PZ0

false rejection rate: want = «

0.1

0.2 0.3 0.4
MMD(X, Y)

0.5



What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

—_— P=0
— P#Q

false rejection rate: want =«

power: true rejection rate

0.1 0.2 0.3 0.4 0.5
MMD(X,Y)
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MMD-based testing

/\2

e Hy: nMMD converges in distribution to...something
= |nfinite mixture of xzs, params depend on [P and k

= Can estimate threshold with permutation testing

e« Hi: /n(MMD — MMD#) — asymptotically normal
e Any characteristic kernel gives consistent test...eventually

e Need enormous n if kernel is bad for problem
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Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

o T'(X,V)is the accuracy of f on the test set

e Under Hy, classification impossible: T' ~ Binomial(n, l)

« With K(z,) = 1 f(2) f(4) where f(z) € {~1,1},

get MMD(X, V) = |F(X, V) —
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Deep learning and deep kernels

k(z,y) = %f(:z:)f(y) is one form of deep kernel

Deep models are usually of the form f(z) = w' ¢, (z)
= With a learned ¢, (z) : X — RP

If we fix 1, have f € Hy with ky (z,9) = ¢y (x) T dy (y)
= Same idea as NNGP approximation

Generalize to a deep kernel:

ky(z,y) = k(Py(x), Dy (v))
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Normal deep learning C deep kernels

o Take ky(x,y) = 3 f4(2)fs(y) + 1
e Final function in ’Hw will be af¢ (:13) + b

e With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo ™! Geoff Pleiss”' YuSun™' Kilian Q. Weinberger '
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Pedro Domingos
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“Normal deep learning C deep kernels” — so?

This does not say that deep learning is (even approximately) a kernel method

...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

We know theoretically deep learning can learn some things faster than any
kernel method [see Malach+ ICML-21 + refs]

But deep kernel learning # traditional kernel models
= exactly like how usual deep learning # linear models


https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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Optimizing power of MMD tests

——— 2
e Asymptotics of MMD give us immediately that

5 (\/HMMDz c, )

—— 2
Pr (’nMMD > Ca) ~
Hy O H, \/7_7’0'H1

MMD, og, , ¢y are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /UHl

— e

e Use MMD from before, get 65, from U-statistic theory

1
e Can show uniform Op(n 3 ) convergence of estimator

e (et better tests (even after data splitting)
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Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD ¢/(IP™, Q7 ) on a minibatch
e MMD GAN: miny [max,;, MMD,, (P, Q)]

¢ SMMD GAN: miny [max,;, SMMD,, (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss for
by making witness function smooth [Arbel+ NeurIPS-18]

. Uses (f, O, k(z, )3 = Or, f(z)
= Standard WGAN-GP better thought of in kernel framework


https://arxiv.org/abs/1805.11565

Application: fair representation learning (MMD-B-FAIR)
[Deka/Sutherland AISTATS-23]

e Want to find a representation where
= We can tell whether an applicant is “creditworthy”

= We can't distinguish applicants by race
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Application: fair representation learning (MMD-B-FAIR)
[Deka/Sutherland AISTATS-23]

e Want to find a representation where
= We can tell whether an applicant is “creditworthy”

= We can't distinguish applicants by race
e Find a good classifier with near-zero test power for race

e Minimizing the test power criterion turns out to be hard
= Workaround: minimize test power of a (theoretical) block test


https://arxiv.org/abs/2211.07907

Application: distribution regression/classification/...

e We can define a kernel on distributions by, e.g.,

1

202

k(P, ):exp( MMD? (P, ))

e Some pointers:
[Muandet+ NeurlPS-12] [Sutherland 2016] [Szabd+ JMLR-16]


https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066
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https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty



https://arxiv.org/abs/1705.04293

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

— 35

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities


https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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IMDb database [Rothe+ 2015]: 400k images of 20k celebrities
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Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty

IMDb database [Rothe+ 2015]: 400k images of 20k celebrities


https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pp uncertainty
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https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

ELf(X)]Elg(Y)] = (f, tp )3, (h0» 93,

= (f, (Lp ® 10)9)u,
E[f(X)g(Y)]



Independence
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Independence
e X 1LY iff Cov(f(X),g(Y)) = 0forall square-integrable f, g
e Let's implement for RKHS functions f € H,, g € H,:

E[f(X)] Elg(Y)] =

7:U'IP’> <HQ79>'H3/
, (up ® #@)g>

(
=
= (/,
(

E[f(X)g(¥)]

[ ( )®’<y(Y, )] 92t
7CXYg>

Cov(f(X),9(Y)) =

where Cxy : H, — H, is

Elk, (X,-) ® ky (V)] = Elke (X, )] @ El&, (V)]



Cross-covariance operator and independence

e Cov(f(X),q(Y))=(f,Cxva)u,
o Cxy = El[k,(X,-) ® ky(V,")] — pup ®
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Cross-covariance operator and independence

Cov(f(X),9(Y)) = ([, Cxva)n,

Cxv =Elk (X, ) ® by (Y, )] — pp @ 1o

If X1Y,thenCxy =0

f Cxy =0, Cov(f(X),9(Y))=0 VfeH,,g€EH,

If k., k, are characteristic:
» Cxy = 0implies X_1LY [Szabd/Sriperumbudur JMLR-18]



https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence

Cov(f(X),9(Y)) = ([, Cxva)n,

Cxv =Elk (X, ) ® by (Y, )] — pp @ 1o

If X1Y,thenCxy =0

f Cxy =0, Cov(f(X),9(Y))=0 VfeH,,gEH,

If k., k, are characteristic:
» Cxy = 0implies X_1LY [Szabé/Sriperumbudur JMLR-18]

» XY iffCxy =0



https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence

» Cov(f(X),9(Y)) = (f, Cxv 9)n,

» Cxv = Elks (X,-) ® by (Y, 7)) — pr @ 1o

e If XUY,thenCxy =0

e If Cxy = 0, Cov(f(X),9(Y)) =0 VfEHa, g€,

o If kg, £, are characteristic:
» Cxy = 0implies X_1LY [Szabé/Sriperumbudur JMLR-18]

» XY iffCxy =0

» XY iff 0 = ||Cxv ||5g (sum squared singular values)
o HSIC: "Hilbert-Schmidt Independence Criterion"


https://arxiv.org/abs/1708.08157

HSIC
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2
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HSIC

Cxv = Elk: (X,-) @ ky (V)] — pr ® 1o
2
|Cxv [lfis = ey, — ke ® 103, g2,
= MMD (Pyxy, P x Q)?
— 2E[k, (X, X )k, (Y, V"))
+ Elk, (X, X)) E[k, (Y, Y7)]

= E jgp(0,,) [Cov(£(X),9(¥))’]
9~GP(0,k)

e Linear case: Cxy is cross-covariance matrix, HSIC is squared Frobenius norm

o Default estimator (biased, but simple): (HKxH,Kv)p, H =1 — 117



HSIC applications

Independence testing [Gretton+ NeurlPS-07]
Clustering [Song+ ICML-07]
Feature selection [Song+ JMLR-12]

HSIC Bottleneck: alternative to backprop [Ma+ AAAI-20]
= pbiologically plausible(ish) [Pogodin+ NeurlPS-20]

= more robust [Wang+ NeurlPS-21]

Self-supervised learning [Li+ NeurlPS-21]
= maybe better explanation of why InfoNCE/etc work

Broadly: easier-to-estimate, sometimes-nicer version of mutual information


https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
http://www.gatsby.ucl.ac.uk/~gretton/papers/SonSmoGreetal07a.pdf
https://jmlr.csail.mit.edu/papers/volume13/song12a/song12a.pdf
https://arxiv.org/abs/1908.01580
https://arxiv.org/abs/2006.07123
https://arxiv.org/abs/2106.02734
https://arxiv.org/abs/2106.08320

Example: SSL-HSIC [Li+ NeurlPS-21]

SSL-HSIC

e Maximizes dependence between image features f and its identity on a
minibatch

e Using a learned deep kernel based on g


https://arxiv.org/abs/2106.08320

Recap
e Point embedding k(X -):if f € H then (f, up)y = Exp f(X)
e Mean embedding up = Ek(X,:):if f € H then (f, up) = Exp f(X)

« MMD(P, Q) = ||up — 10 || is 0 iff P = () (for characteristic kernels)
o HSIC(X, Y) = CXY“HS = MMD(ny,]P) X Q)z isOiff XY

(for characteristic k5, k,...or slightly weaker)

e Often need to learn a kernel for good performance on complicated data
= Can often do end-to-end for downstream loss, asymptotic test power, ...



More resources

Berlinet and Thomas-Agnan, RKHS in Probability and Statistics
= kernels in general + mean embedding basics

Steinwart and Christmann, Support Vector Machines
= kernels in general, learning theory

Course slides by Julien Mairal + Jean-Philippe Vert
= kernels in general, learning theory

Course materials by Arthur Gretton
= kernels in general, mean embeddings, MMD/HSIC

Connections to Gaussian processes [Kanagawa+ 'GPs and Kernel Methods' 2018]
Mean embeddings: survey [Muandet+ 'Kernel Mean Embedding of Distributions']

These slides are at djsutherland.ml/slides/like23


https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522
https://djsutherland.ml/slides/like23/




