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Deep learning and deep kernels

Deep learning: models usually of form f(z) = w' ¢ (z)
= With a learned ¢ (x) : X — RP

If we fix 1, have f € H.,, with ky(z,y) = ¢y (z) " dy ()
= Same idea as NNGP approximation

Could train a classifier by:
= Let L(¢)) = L(f}). loss of the best f € Hy

= Learn v by following V., L(1)) = VyL(f})
Generalize to a deep kernel:

ky(z,y) = & (dy (), Dy (y))
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Normal deep learning C deep kernels

e Take ¢, (x) € R as output of /ast layer

* ky(2,y) = du(a)dy(y) +1
e Final function in ‘H,, will be ag, (x) + b

e With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo “! Geoff Pleiss“! Yu Sun”! Kilian Q. Weinberger !
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So what?

This definitely does not say that deep learning is (even
approximately) a kernel method

...despite what some people might want you think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

We know theoretically deep learning can learn some things
faster than any kernel method [see Malach+ ICML-21 + refs]

But deep kernel learning # traditional kernel models
= exactly like how usual deep learning # linear models


https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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What do deep kernels give us?

In “normal” classification: slightly richer function space %

Meta-learning: common ¢, constantly varying f;;

Two-sample testing
= Simple form of f;; for cheap permutation testing

Self-supervised learning
= Better understanding of what's really going on, at least

Generative modeling with MMD GANS
= Better gradient for generator to follow (?)

Score matching in exponential families (density estimation)
= Optimize regularization weights, better gradient (?)
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Maximum Mean Discrepancy (MMD)

MMDy (B, 0) = sup E [f(X)] - E [f(V)]
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MMD as feature matching

MMD; (P, Q) = |

E [e(X)] - E (1)

X~ P 2

e v : X — Histhe feature map for k(a:, y) - (90(213), 90(3/)>

o Ifk(z,y) = 2"y, p(z) = z, then
the MMD is distance between means

e Many kernels: infinite-dimensional H
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Estimating MMD

MMD;(P,0) = E [b(X, X))+ E [k(V,V)]=2 E_[kX,Y)]

~Y

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy ) — 2mean(K xy )

Kxx K Kx
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I: Two-sample testing

e Given samples from two unknown distributions

M e N\

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]

Do these dob and birthday columns mean the same thing?

Does my generative model match Pg,:4?

Independence testing: is P(X,Y) = P(X)P(Y)?
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I: Two-sample testing

Given samples from two unknown distributions
X~ P ~

Question: is [P = ()7

Hypothesis testing approach:
HO P = Hl - P 75

Reject Hy if test statistic T (X, V) > ca
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What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

—_— P=(
— PZEQ

false rejection rate: want = «

power: true rejection rate

0.1 0.2 0.3 0.4 0.5
T(X.Y)
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Permutation testing to find ¢,
Need Pry, (T(X,Y) > cy) < @

X1 Xo X3 X4 Xs Yi Yo Y

el

¢y 1 — ath quantile of {T(X'l, ), T(Xz,

Yy
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MMD-based tests
If k is characteristicc MMD(P, Q) = 0iff P =

— e

Efficient permutation testing for MMD (X, V)

——— 2
» Hy: nMMD converges in distribution

= Hi:/n(MMD — MMD*#) asymptotically normal
Any characteristic kernel gives consistent test...eventually

Need enormous n if kernel is bad for problem
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Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

. T(X, Y') is the accuracy of f on the test set

e Under Hy, classification impossible: T ~ Binomial(n, l)

2
» With k(z, y) = 7 f(2)f(y) where f(z) € {-1,1},
get MMD(X, V) = |T(X,Y) —
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Optimizing test power

/\2

e Asymptotics of MMD give us immediately that

2 n MMD?
Pr (nMMD S ca) ~ & (*/_ Ca )

Hy O-H:l \/ﬁo'Hl

MMD, oH, , ¢, are constants: first term dominates

e Pick k to maximize an estimate of MMD? [om,

1
e Can show uniform Op(n 3 ) convergence of estimator






Blobs kernels
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CIFAR-10 vs CIFAR-10.1
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kel
Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:
ME SCF C25sT MMD-O MMD-D

0.588 0.171 0.452 0.316 0.744




Ablation vs classifier-based tests

Cross-entropy Max power
Dataset Sign Lin Ours Sign Lin Ours
Blobs 0.84 0.94 0.90 - 095 0.99
High-d Gauss. mix. 0.47 0.59 0.29 - 0.64 0.66
Higgs 0.26 0.40 0.35 - 030 0.40

MNIST vs GAN 0.65 0.71 0.80 - 094 1.00
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But...

What if you don't have much data for your testing problem?
Need enough data to pick a good kernel
Also need enough test data to actually detect the difference

Best split depends on best kernel's quality / how hard to find
= Don't know that ahead of time; can't try more than one
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Meta-testing

e One idea: what if we have related problems?

e Similar setup to meta-learning:

1 ?

>

I\ Exemplars i Evaluation data (Query set) /
- Y

Exemplars Evaluation data (Query set)

' ) | o >N .
L Exemplars ! Evaluation data (Query set) } (from Wei+ 201 8)



https://arxiv.org/abs/1805.04288
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Meta-testing for CIFAR-10 vs CIFAR-10.]
e CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031

e \Where do we get related data from?

e One option: set up tasks to distinguish classes of CIFAR-10
(airplane vs automobile, airplane vs bird, ...)
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One approach (MAML-like)

’ -y

T )
__.L__. Dat ;plitting I Ay is, e.g., 5 steps of
= E\,‘ = E\,‘ gradient descent
"};Eul 1
we learn the
_O_Ut&, k _{MMD Test] initialization, maybe
Apply Meta-train A on related tasks Step size, etc

' arg max J (I
0

B samples from P B samples from Q ™ [™] Training Samples gl [ Testing Samples Meta-Samples

This works, but not as well as we'd hoped...
Initialization might work okay on everything, not really adapt



Another approach: Meta-MKL

- oem mm my

‘o W
\ . .
~--T-»' Inspired by classic
N Data Splitting 1. multiple kernel
.’ ' '’ : learnin
‘\g_ _=,"Learn weights ‘\g_ _E_," g
maxf
P -« Zﬁk Only need to learn
D=3 k)0 &% linear combination B;
I - .
! | ! on test task:
: tearn 7. | '
| ey 7o) [MMD Test] much easier

——————————

B samples from P B samples from Q ™ [™] Training Samples gl [ Testing Samples Meta-Samples
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Theoretical analysis for Meta-MKL

e Same big-O dependence on test task size &

e But multiplier is much better:
based on number of meta-training tasks, not on network size

e (Analysis assumes meta-tasks are “related” enough)



Results on CIFAR-10.]

my = 100 My = 200
Methods
mye = 200 my. = 500 my, = 900 mye = 200 my = 500 my = 900
ME 0.084:0000 0.096+0016 0.160+00s5  0.104x0013  0.20220020 0.3262003
SCF 0.047x003  0.037<00n  0.047+005  0.02620000 0.0184006 0.026+0.012
C28T-S 0.059+0000  0.062+0007  0.08920007  0.05220011  0.0544001  0.0570.008
C25T-L | 0.064x0000 0.06420006 0.0630000  0.07520014  0.066+001  0.067 0008
MMD-O | 0.091:00n1  0.141:0000 0.279:008  0.084:000r  0.1601001  0.3190.020
MMD-D  0.104w000r  0.22240020 0.418400.6  0.1172003  0.226400m  0.4442003
AGT-KL | 0.170x002  0.457+0052  0.76520055  0.1522008  0.463+0060  0.778=005
Meta-KL 0.245+0010  0.671:0026  0.959+0.013 0.226+005  0.668:0052  0.972+0.006
Meta-MKL 0.277 10016 0.728+0020 0.973 40008 0.25540.020 0.72440.026 0.9930.005
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Challenges for testing

e When IP # (), can we tell how they're different?
= Methods so far: some mostly for low-d

= Some look at points with large critic function
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e Finding kernels / features that can't do certain things
= distinguish by emotion, but can't distinguish by skin color

e Avoid the need for data splitting (selective inference)
= KUbler+ NeurlPS-20 gave one method
= only for multiple kernel learning
= only with data-inefficient (streaming) estimator


https://arxiv.org/abs/2006.02286
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Given a bunch of unlabeled samples X,
want to find “good” features Z = f(X)

(e.g. so that a linear classifier on Z works with few samples)



lI: Self-supervised learning

Given a bunch of unlabeled samples X,
want to find “good” features Z = f(X)

(e.g. so that a linear classifier on Z works with few samples)

One common approach: contrastive learning




INfONCE [van den Oord+ 2018, Poole+ ICML-19]

IZE? |: I [k(Zl, Zz)]] + lOgIZE;[eXP(k(Zla ZZ))-

Z9 ~POS

< MI(Z, Zs)

Variants;
CPC, SImCLR, MoCo, SWAY, ...



https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1905.06922

Mutual information isn't why SSL works!
INfoNCE approximates MI between "positive" views

But Ml is invariant to transformations important to SSL!

MI(z',2%)= log 2 for all cases

000000
0000
00 -

Y~better for SSL
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Hilbert-Schmidt Independence Criterion (HSIC)

HSIC(X,Y) = |E[¢(X) ® ¢(¥)] — E[¢(X)] @ E[¢(¥)] |z
= MMD?(Pxyv,Px @ Py)
< Cpy MI(X,Y) (Cx, depends only on | k|| )

With a linear kernel: HSIC = HE[X " —E[X]E] ]-'_Hf7
Estimator based on kernel matrices:

ASIC = ! tr(KHLH)
(n —1)°

e H is the centering matrix
e K isthe kernel matrix on X

e [, is the kernel matrix on



SSL-HSIC

Lostmsic = — HSIC(Z, V) + fy\/HSIC(Z, 7)

(Y is just an indicator of which source image it came from)

k(22>

> K

e
SSL-HSIC
v

ﬁ‘(y, y) ..'-.

Target representation Z' is output of fg(X)
HSIC uses learned kernel k(Z1, Zs) = IMQ(g(Z1), g(Z3))
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Your InfoNCE model is secretly a kernel method...

Linfo f) = — E k(Z1,Z9)| + Elog E|exp k(Z71, Z
IfNCE() (Zl,Zz)Npos[( 1 2)] Z gZ2[XP ( 1 2)]

1
~— E [k(Z1,2:)|+ EE[k(Z1,2:)]+ <E [Var[k(Zl, Zz)]]
Z1,29~POSs Z1 Zo 2 Z9

o o (. _J

N

ox— HSIC(Z,Y) variance penalty

Very similar loss! Just different regularizer

When variance is small,
—HSIC(Z,Y) + yHSIC(Z, Z) < Lintonce + o(variance)
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Clustering interpretation

SSL-HSIC estimates agreement of Z with cluster structure of

With linear kernels:

—nm

— HSIC(Z, 5‘ |27 —

zlp

where Z; is mean of the m augmentations

Resembles BYOL loss with no target network (but still works!)



ImageNet results: linear evaluation
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SSL-HSIC (ours
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Transfer from ImageNet to classification tasks

Supervised-IN

SimCLR
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lll: Training implicit generative models

Given samples from a distribution [P over X,
we want a model that can produce new samples from (), ~ P
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we wan



https://thispersondoesnotexist.com/

lll: Training implicit generative models

Given samples from a distribution [P over &,
we want a model that can produce new samples from

“Everybody Dance Now" [Chan+ ICCV-19]

(a4


https://arxiv.org/abs/1808.07371

Generator networks

Fixed distribution of latents: Z ~ Uniform ([—1, 1]100)

Maps through a network: Gy (Z) ~ Q)

DCGAN generator [Radford+ ICLR-16]


https://arxiv.org/abs/1511.06434

Generator networks

Fixed distribution of latents: Z ~ Uniform ([—L 1]100)

Maps through a network: Gy (Z) ~ Q)

DCGAN generator [Radford+ ICLR-16]

How to choose (?


https://arxiv.org/abs/1511.06434

GANSs and their flaws

e GANS [Goodfellow+ NeurlPS-14] minimize discriminator accuracy
(like classifier test) between [P and ()

e Problem: if there's a perfect classifier, discontinuous loss, no
gradient to improve it [Arjovsky/Bottou ICLR-17]

e Disjoint at init:
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GANSs and their flaws

GANS [Goodfellow+ NeurlPS-14] minimize discriminator accuracy
(like classifier test) between [P and ()

Problem: if there's a perfect classifier, discontinuous loss, no
gradient to improve it [Arjovsky/Bottou ICLR-17]

Disjoint at init:

For usual Gy : R190 — RO4X64X3 () is supported on a
countable union of manifolds with dim < 100

“Natural image manifold” usually considered low-dim

Won't align at init, so won't ever align


https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/https://arxiv.org/abs/1701.04862

WGANs and MMD GANs

e Integral probability metrics with “smooth” J are continuous

e WGAN: F a set of neural networks satisfying || f||;, <1

o WGAN-GP: instead penalize E||V, f(x)|| near the data
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WGANs and MMD GANs

Integral probability metrics with “smooth” J are continuous

WGAN: F a set of neural networks satisfying || f||;, <1

WGAN-GP: instead penalize E||V f(z)|| near the data
Both losses are MMD with ky, (z,y) = ¢y () Py (y)

y min | Dypyp (P, Q) = sup MMD,, (P, 0)
0 »eT

Some kind of constraint on ¢, is important!



Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:
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1.5
MMDyg >5
1.0
MMD,
0.5
0.0
-5.0 =25 0.0 2.5 50



https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw=2(

1.5

1.0

0.5

0.0

0, x)
A \yroml0
| :

MMD,

MMDyg >5

-5.0 -25

0.0

2.5

5.0



https://arxiv.org/abs/1801.04406

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

0, x)
i
| W

1.5

1.0

0.5

0.0

-5.0

Non-smoothness of plain MMD GANSs

kw=2(

MMD,

MMDyg >5

-2.5

0.0

2.5

5.0

X

6



https://arxiv.org/abs/1801.04406

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

0, x)
i
| W

1.5

1.0

0.5

0.0

-5.0

Non-smoothness of plain MMD GANSs

kw=2(

MMD,

MMDyg >5

-2.5

0.0

2.5

5.0

X

6



https://arxiv.org/abs/1801.04406
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Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:
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Non-smoothness of plain MMD GANSs

0.25(0, x)

k()U:

kw:Z(O,X)

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

MMD

VNN NN ../l
LO T T T W

[ R T T TR T Y

IDIVIVIS

1.5

1.0

0.5

-25 0.0 2.5 5.0

-5.0


https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw= 2(Or X)
i
I

e ; —

e Just need to stay away from tiny bandwidths 1



https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw= 2(Or X)
i
I

e ; —

e Just need to stay away from tiny bandwidths

e ..deep kernel analogue is hard.



https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw= 2(01 X)
i
I

e ; —

e Just need to stay away from tiny bandwidths 1

e ..deep kernel analogue is hard.

e |nstead, keep witness function from being too steep



https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw= 2(Or X)
i
I

e ; —

Just need to stay away from tiny bandwidths )
...deep kernel analogue is hard.
Instead, keep witness function from being too steep

sup,, |V f(x)]|| would give Wasserstein
= Nice distance, but hard to estimate



https://arxiv.org/abs/1801.04406

Non-smoothness of plain MMD GANSs

llustrative problem in IR, DiracGAN [Mescheder+ ICML-18]:

kw= 2(07 X)
i
I

e : —

Just need to stay away from tiny bandwidths )
...deep kernel analogue is hard.
Instead, keep witness function from being too steep

sup,, |V f(x)]|| would give Wasserstein
= Nice distance, but hard to estimate

Control ||V f(X)|| on average, near the data
» [Gulrajani+ NeurlPS-17 / Roth+ NeurlPS-17 / Mescheder+ ICML-18]

U A
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MMD-GAN with gradient control

o If W gives uniformly Lipschitz critics, DE/IMD Is smooth

e Original MMD-GAN paper [Li+ NeurlPS-17]: box constraint
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MMD-GAN with gradient control

IS smooth

o |If W gives uniformly Lipschitz critics, DI{;IMD

17]1: box constraint

-GAN paper [Li+ NeurlPS

e Original MMD

o We [Bin

18] used gradient penalty on critic instead

= Better in practice, but doesn't fix the Dirac problem...

kowski+ ICLR

MMD-GP

MMD
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New distance: Scaled MMD
Wanttoensure E;_[|[VF(X)|?] < 1
Can solve with (9;d(x), f) = 0; f(x)...but too expensive!

Guaranteed if || f||% < o5k

1
OS k) ‘= (}\—I— K [k(X,X) + [V1V2k](X,X)]) :
X~S

Gives distance SMMDs ¢ 5 (P, Q) = o5 11 MMDy (PP, Q)

Dyup has F = U {fﬁ [ fll3e, < 1}
Yew

S, U,
Daiap bas F = |J {F: £, < ovpn ]
Yew
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Deriving the Scaled MMD
E [f(X)’ ]+ K [IIVf( O]+ AllfII3, <1

X~S
E [f(X)?] < E [k(X
X~S X~S
C d
E (IVFAOI7] = < E ;ja,k

)]f>

")

) ® B k(X




Deriving the Scaled MMD

).ES[f(X) I+ B lIVAX O]+ Alfl5 <1

E [f()] = <f,XNS (T, © KT, ) )

E [IVAR)IF = < E zazko’f ) ® Ok(X, )

|—l

(£,Daf) < |Dall|
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Smoothness of Dgyivp
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Theorem: D, iy

IS continuous.

If S has a density; ktop is Gaussian/linear/...;
q5¢ is fully-connected, Leaky-ReLU, non-increasing width;
all weights in W have bounded condition number; then

W(Q,,,P) — 0 implies D
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Results on 160 x 160 CelebA
SN-SMMD-GAN WGAN-GP

KID: 0.006 KID: 0.022
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Evaluating generative models
Human evaluation: good at precision, bad at recall
Likelihood: hard for GANs, maybe not right thing anyway
Two-sample tests: always reject!

Most common: Fréchet Inception Distance, FID
= Run pretrained featurizer on model and target

» Model each as Gaussian; compute Wy

= Strong bias, small variance: very misleading

= Simple examples where FID(Q, ) > FID(Q,) but
FID(Q,) < FID((Q,) for reasonable sample size

Our KID: MMD? instead. Unbiased, asymptotically normal
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IV: Unnormalized density/score estimation
e Problem: given samples X; ~ [Py with density p,

e Model is kernel exponential family: for any f € H,

ps(z) = exp(f(z)) q(x)/Z(f)
=exp(( f , 8(z) )y) a(@) / Z(f)

~~ S~~~ S~~~ S~~~
natural  sufficient base = normalizer
parameter statistic measure

i.e. any density with logp — logq € ‘H

e Gaussian k: dense in all continuous distributions on compact
domains



Density estimation with KEFs

e Fitting with maximum likelihood is tough:

= Z(f), VZ(f) are tough to compute

= Likelihood equations ill-posed for characteristic kernels

e We choose to fit the unnormalized model
= Could then estimate Z( f) once after fitting if necessary



Unnormalized density / score estimation

e Don't necessarily need to compute Z( f) afterwards

o f+1logq=1logps+ log Z(f), the “energy”, lets us:
= Find modes (global or local)
= Sample (with MCMC()

e Thescore, V,[f(x) + logg(z)] = V. logps(z), lets us:
= Run HMC for targets whose gradients we can't evaluate

s Construct Monte Carlo control functionals



Score matching in KEFs [Sriperumbudur+ JMLR-17]

e |dea: minimize Fisher divergence J(po ||ps)

1

1) =5 [ @]V logps(@) - V., logm (@) da
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1) =5 [ @]V logps(@) - V., logm (@) da

2

e Under mild assumptions, J(f) = C(PO) +

[

(2) )

d=1 Lt

02 log ps(x)

L1
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(81 log ps (2)))*

dx


http://jmlr.org/papers/v18/16-011.html

Score matching in KEFs [Sriperumbudur+ JMLR-17]

e |dea: minimize Fisher divergence J(po ||ps)

1

1) =5 [ @]V logps(@) - V., logm (@) da

2

e Under mild assumptions, J(f) = C(PO) +

D

/po (x) Z -802[ logps(z) + 5

d=1 -

e Can estimate with Monte Carlo

1

(81 log ps (2)))*

dx


http://jmlr.org/papers/v18/16-011.html

Score matching in KEFs [Sriperumbudur+ JMLR-17]
e Minimize regularized loss function:

n d
NOEED D) ML IEAREICHEN FEI
1

a=1 1=
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Score matching in KEFs [Sriperumbudur+ JMLR-17]

e Minimize regularized loss function:

ZZ 21(X) + @S0 | + N1

alz

e Representer theorem tells us minimizer of J ) over H. is

i€(d]
ac<(n|

frx € span{0;kx, }ZEE[[ ]] Uspan {02kx, }
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e Minimize regularized loss function:

ZZ 21(X) + @S| + N1

a=1 1=

e Representer theorem tells us minimizer of J ) over H is

i€(d]
ac<(n|

Frx € span {0;kx, }ZEE[[ ]] Uspan {02kx, }
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Score matching in KEFs [Sriperumbudur+ JMLR-17]

e Minimize regularized loss function:

ZZ 21(X) + @S| + N1

alz

e Representer theorem tells us minimizer of J ) over H is

i€(d]
ac<(n|

frx € span {0;kx, }ZEE[[ ]] Uspan {0?kx, }

\/

32K, 5 92k_1 97ko d3ko.5 9%K1 1
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Score matching in a subspace
e Best f € Hisin
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Score matching in a subspace
e Best f € Hisin
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e Find best f in dim M subspace in (’)(ndM2 + M3) time
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Score matching in a subspace
e Best f € Hisin

i€|d]
a€(n|

Hszn = span {0;kx, }ie[d] U span {87,2 kx, }

ac<|n]
e Find best f in dim M subspace in O(ndM? 4+ M?) time

g = —(%B}Y BXY + )\ny)Jr hy
N N~ A
Mxnd ndxM MxM Mx1

s Heat: M = 2nd, (’)(n3d3) time!



Nystrom approximation [Sutherland+ AISTATS-18]

* Hsn = span{0;kx, }iee[[cﬁ,] U span {87 kx, }iee[[cﬂ]
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Nystrom approximation [Sutherland+ AISTATS-18]

o Hen = span {0;kx, } [[ ]] U span{@zk }

e Nystrom approximation: find fit in different (smaller) ’Hy

e One choice: pick Y C [n], |Y| = m at random, then
= span {0;kx, }Ze[d] O(nm?2d®) time

acyY
Get the same rates with m = \/ﬁ log n (sometimes less)

91K_1 01K1.1
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Nystrom approximation [Sutherland+ AISTATS-18]
e Hsn = span {0;kx, }266[5,1] U span {9?kx, }Zee[[cﬁ]
e Nystrom approximation: find fit in different (smaller) Hy
e One choice: pick Y C [n], |Y| = m at random, then
= span {0;kx, }zee[gﬂ O(nm?2d®) time

Get the same rates with m = \/ﬁ log n (sometimes less)

e “lite”. pick Y at random, then
= span{kx, },.v ) time

M\f



https://arxiv.org/abs/1705.08360

Meta-learning a kernel
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Results

e Learns local dataset geometry: better fits

e On real data: slightly worse likelihoods, maybe better
“shapes” than deep likelihood models
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Results

e Learns local dataset geometry: better fits

e On real data: slightly worse likelihoods, maybe better
“shapes” than deep likelihood models



deep max-likelihood models [6]
.
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Recap

Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.
— Y. Bengio &Y. LeCun (2007), “Scaling Learning Algorithms towards Al”
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Recap

Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.
— Y. Bengio &Y. LeCun (2007), “Scaling Learning Algorithms towards Al”

e Two-sample testing [ICLR-17, ICML-20, NeurlPS-21]
= 1) maximizing power criterion, for one task or many

e Self-supervised learning with HSIC [NeurIPS-21]
= Much better understanding of what's going on!

e Generative modeling with MMD GANS [ICLR-18, Neur|PS-18]
= Need a smooth loss function for the generator

e Score matching in exponential families [AISTATS-18, ICML-19]
= Avoid overfitting with closed-form fit on held-out data


http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1611.04488
https://arxiv.org/abs/2002.09116
https://arxiv.org/abs/2106.07636
https://arxiv.org/abs/2106.08320
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1805.11565
https://arxiv.org/abs/1705.08360
https://arxiv.org/abs/1811.08357

