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Deep learning: models usually of form 

With a learned

If we �x , have  with 

Same idea as NNGP approximation

Could train a classi�er by:

Let , loss of the best 

Learn  by following 

Generalize to a deep kernel:
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So what?So what?
This de�nitely does not say that deep learning is (even

approximately) a kernel method

…despite what some people might want you think

We know theoretically deep learning can learn some things

faster than any kernel method [see  + refs]

But deep kernel learning ≠ traditional kernel models

exactly like how usual deep learning ≠ linear models

Malach+ ICML-21

https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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What do deep kernels give us?What do deep kernels give us?
In “normal” classi�cation: slightly richer function space 🤷

Meta-learning: common , constantly varying 

Two-sample testing

Simple form of  for cheap permutation testing

Self-supervised learning

Better understanding of what's really going on, at least

Generative modeling with MMD GANs

Better gradient for generator to follow (?)

Score matching in exponential families (density estimation)

Optimize regularization weights, better gradient (?)
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MMD as feature matchingMMD as feature matching

 is the feature map for 

If , , then 

the MMD is distance between means

Many kernels: in�nite-dimensional
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I: Two-sample testingI: Two-sample testing
Given samples from two unknown distributions

Question: is ?

Do smokers/non-smokers get di�erent cancers?

Do Brits have the same friend network types as Americans?

When does my laser agree with the one on Mars?

Are storms in the 2000s di�erent from storms in the 1800s?

Does presence of this protein a�ect DNA binding? [ ]

Do these dob and birthday columns mean the same thing?

Does my generative model  match ?

Independence testing: is ?

MMDiff2

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html
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I: Two-sample testingI: Two-sample testing
Given samples from two unknown distributions

Question: is ?

Hypothesis testing approach:

Reject  if test statistic 
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MMD-based testsMMD-based tests

If  is characteristic,  i� 

E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal

Any characteristic kernel gives consistent test…eventually

Need enormous  if kernel is bad for problem
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 is the accuracy of  on the test set

Under , classi�cation impossible: 

With  where , 

get 
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Optimizing test powerOptimizing test power

Asymptotics of  give us immediately that

, ,  are constants: �rst term dominates

Pick  to maximize an estimate of 

Can show uniform  convergence of estimator
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Blobs resultsBlobs results



CIFAR-10 vs CIFAR-10.1CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:

ME SCF C2ST MMD-O MMD-D

0.588 0.171 0.452 0.316 0.744



Ablation vs classifier-based testsAblation vs classifier-based tests

Cross-entropy Max power

Dataset Sign Lin Ours Sign Lin Ours

Blobs 0.84 0.94 0.90 – 0.95 0.99

High-  Gauss. mix. 0.47 0.59 0.29 – 0.64 0.66

Higgs 0.26 0.40 0.35 – 0.30 0.40

MNIST vs GAN 0.65 0.71 0.80 – 0.94 1.00
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But…But…
What if you don't have much data for your testing problem?

Need enough data to pick a good kernel

Also need enough test data to actually detect the di�erence

Best split depends on best kernel's quality / how hard to �nd

Don't know that ahead of time; can't try more than one
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Meta-testingMeta-testing
One idea: what if we have related problems?

Similar setup to meta-learning:

(from )Wei+ 2018

https://arxiv.org/abs/1805.04288
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Meta-testing for CIFAR-10 vs CIFAR-10.1Meta-testing for CIFAR-10 vs CIFAR-10.1
CIFAR-10 has 60,000 images, but CIFAR-10.1 only has 2,031

Where do we get related data from?

One option: set up tasks to distinguish classes of CIFAR-10

(airplane vs automobile, airplane vs bird, ...)
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One approach (MAML-like)One approach (MAML-like)

 is, e.g., 5 steps of

gradient descent

we learn the

initialization, maybe

step size, etc

This works, but not as well as we'd hoped… 

Initialization might work okay on everything, not really adapt



Another approach: Meta-MKLAnother approach: Meta-MKL

Inspired by classic

multiple kernel

learning

Only need to learn

linear combination 

on test task:

much easier
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Theoretical analysis for Meta-MKLTheoretical analysis for Meta-MKL
Same big-O dependence on test task size 😐

But multiplier is much better: 

based on number of meta-training tasks, not on network size

(Analysis assumes meta-tasks are “related” enough)



Results on CIFAR-10.1Results on CIFAR-10.1
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Challenges for testingChallenges for testing

When , can we tell how they're di�erent?

Methods so far: some mostly for low-

Some look at points with large critic function

Finding kernels / features that can't do certain things

distinguish by emotion, but can't distinguish by skin color

Avoid the need for data splitting (selective inference)

 gave one method

only for multiple kernel learning

only with data-ine�cient (streaming) estimator

Kübler+ NeurIPS-20

https://arxiv.org/abs/2006.02286
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II: Self-supervised learningII: Self-supervised learning

Given a bunch of unlabeled samples ,

want to �nd “good” features 

(e.g. so that a linear classi�er on  works with few samples)

One common approach: contrastive learning



InfoNCE InfoNCE [[ , , ]]

Variants:

CPC, SimCLR, MoCo, SwAV, …

van den Oord+ 2018van den Oord+ 2018 Poole+ ICML-19Poole+ ICML-19

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1905.06922


Mutual information isn't why SSL works!Mutual information isn't why SSL works!
InfoNCE approximates MI between "positive" views

But MI is invariant to transformations important to SSL!
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Hilbert-Schmidt Independence Criterion (HSIC)Hilbert-Schmidt Independence Criterion (HSIC)

With a linear kernel: 

Estimator based on kernel matrices:

 is the centering matrix

 is the kernel matrix on 

 is the kernel matrix on 



SSL-HSICSSL-HSIC

(  is just an indicator of which source image it came from)

Target representation  is output of 

HSIC uses learned kernel 
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Your InfoNCE model is secretly a kernel method…Your InfoNCE model is secretly a kernel method…

Very similar loss! Just di�erent regularizer

When variance is small,
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Clustering interpretationClustering interpretation

SSL-HSIC estimates agreement of  with cluster structure of 

With linear kernels:

where  is mean of the  augmentations

Resembles BYOL loss with no target network (but still works!)
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Transfer from ImageNet to classification tasksTransfer from ImageNet to classification tasks
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Given samples from a distribution  over ,

we want a model that can produce new samples from 

thispersondoesnotexist.com

https://thispersondoesnotexist.com/


III: Training implicit generative modelsIII: Training implicit generative models

Given samples from a distribution  over ,

we want a model that can produce new samples from 

“Everybody Dance Now” [ ]Chan+ ICCV-19

https://arxiv.org/abs/1808.07371
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Generator networksGenerator networks

Fixed distribution of latents: 

Maps through a network: 

DCGAN generator [ ]

How to choose ?

Radford+ ICLR-16

https://arxiv.org/abs/1511.06434
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GANs and their flawsGANs and their flaws
GANs [ ] minimize discriminator accuracy

(like classi�er test) between  and 

Problem: if there's a perfect classi�er, discontinuous loss, no

gradient to improve it [ ]

Disjoint at init:

: :

For usual ,  is supported on a

countable union of manifolds with dim 

“Natural image manifold” usually considered low-dim

Won't align at init, so won't ever align

Goodfellow+ NeurIPS-14

Arjovsky/Bottou ICLR-17

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/https://arxiv.org/abs/1701.04862
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WGANs and MMD GANsWGANs and MMD GANs

Integral probability metrics with “smooth”  are continuous

WGAN:  a set of neural networks satisfying 

WGAN-GP: instead penalize  near the data

Both losses are MMD with 

Some kind of constraint on  is important!
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Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs

Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

…deep kernel analogue is hard.

Instead, keep witness function from being too steep

 would give Wasserstein

Nice distance, but hard to estimate

Control on average, near the data

[  /  / ]Gulrajani+ NeurIPS-17 Roth+ NeurIPS-17 Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1705.09367
https://arxiv.org/abs/1801.04406
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Smoothness of Smoothness of 

Theorem:  is continuous.

If  has a density;  is Gaussian/linear/…; 

 is fully-connected, Leaky-ReLU, non-increasing width; 

all weights in  have bounded condition number; then



Results on Results on  CelebA CelebA
SN-SMMD-GAN

KID: 0.006

WGAN-GP

KID: 0.022
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Evaluating generative modelsEvaluating generative models
Human evaluation: good at precision, bad at recall

Likelihood: hard for GANs, maybe not right thing anyway

Two-sample tests: always reject!

Most common: Fréchet Inception Distance, FID

Run pretrained featurizer on model and target

Model each as Gaussian; compute 

Strong bias, small variance: very misleading

Simple examples where  but 

 for reasonable sample size

Our KID:  instead. Unbiased, asymptotically normal
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IV: Unnormalized density/score estimationIV: Unnormalized density/score estimation

Problem: given samples  with density 

Model is kernel exponential family: for any ,

i.e. any density with 

Gaussian : dense in all continuous distributions on compact

domains



Density estimation with KEFsDensity estimation with KEFs
Fitting with maximum likelihood is tough:

,  are tough to compute

Likelihood equations ill-posed for characteristic kernels

We choose to �t the unnormalized model

Could then estimate once after �tting if necessary



Unnormalized density / score estimationUnnormalized density / score estimation

Don't necessarily need to compute  afterwards

, the “energy”, lets us:

Find modes (global or local)

Sample (with MCMC)

…

The score, , lets us:

Run HMC for targets whose gradients we can't evaluate

Construct Monte Carlo control functionals

…
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Score matching in KEFs Score matching in KEFs [[ ]]

Idea: minimize Fisher divergence 

Under mild assumptions, 

Can estimate with Monte Carlo

Sriperumbudur+ JMLR-17Sriperumbudur+ JMLR-17

http://jmlr.org/papers/v18/16-011.html
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Score matching in a subspaceScore matching in a subspace

Best  is in

Find best  in dim  subspace in  time

: ,  time!
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Nyström approximation Nyström approximation [[ ]]

Nyström approximation: �nd �t in di�erent (smaller) 

One choice: pick ,  at random, then 

Get the same rates with  (sometimes less)

“lite”: pick  at random, then 

Sutherland+ AISTATS-18Sutherland+ AISTATS-18

https://arxiv.org/abs/1705.08360
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RecapRecap
Combining a deep architecture with a kernel machine that takes the

higher-level learned representation as input can be quite powerful.

— Y. Bengio & Y. LeCun (2007), “ ”Scaling Learning Algorithms towards AI

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf


RecapRecap
Combining a deep architecture with a kernel machine that takes the

higher-level learned representation as input can be quite powerful.

— Y. Bengio & Y. LeCun (2007), “ ”

Two-sample testing [ , , ]

 maximizing power criterion, for one task or many

Self-supervised learning with HSIC [ ]

Much better understanding of what's going on!

Generative modeling with MMD GANs [ , ]

Need a smooth loss function for the generator

Score matching in exponential families [ , ]

Avoid over�tting with closed-form �t on held-out data

Scaling Learning Algorithms towards AI

ICLR-17 ICML-20 NeurIPS-21

NeurIPS-21

ICLR-18 NeurIPS-18

AISTATS-18 ICML-19

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1611.04488
https://arxiv.org/abs/2002.09116
https://arxiv.org/abs/2106.07636
https://arxiv.org/abs/2106.08320
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1805.11565
https://arxiv.org/abs/1705.08360
https://arxiv.org/abs/1811.08357

