
Danica Sutherland University of British Columbia (Vancouver) and Amii (she/her)

Data-efficient learning, 
in general and in LLM preference tuning

Hamed Shirzad
UBC 
(3)Wonho Bae

UBC 
(1 2 3)

Yi (Joshua) Ren
UBC 
(4)

Junhyug Noh
Ewha Womans University 

(1)

Mingyu Kim
UBC 
(3)

Gabriel Oliveira
Borealis AI 

(2)

based on:

1. Generalized Coverage for More Robust Low-Budget Active Learning (ECCV 2024; arXiv:2407.12212) 
2. Uncertainty Herding: One Active Learning Method for All Label Budgets (ICLR 2025; arXiv:2412.20644) 
3. Rethinking Selective Annotation for In-Context Learning in LLMs (in submission, not online yet) 
4. Learning Dynamics of LLM Finetuning (ICLR 2025; arXiv:2407.10490)
with:

Snowflake, February 2025

https://arxiv.org/abs/2407.12212
https://arxiv.org/abs/2412.20644
https://arxiv.org/abs/2407.10490

Active learning
• Data is everywhere!

• …but maybe not cleanly labeled data

• …that’s relevant to the particular task we’d like to learn 

• Pool-based active learning:

Labeled data ℒ Train
Unlabeled data 𝒰Predict

Choose points to label

Predictor

Labeling oracle

Add to labeled set

https://commons.wikimedia.org/wiki/File:Neural_network.svg
https://commons.wikimedia.org/wiki/File:Oracle_of_Delphi,_red-figure_kylix,_440-430_BC,_Kodros_Painter,_Berlin_F_2538,_141668.jpg

Selection criteria
• The key question: which points should we choose for labeling?

Most approaches: 
points that are uncertain 
for the current predictor

Recent approaches: 
points that are representative 

of the distribution

Uncertainty-based selection
• Myopic selection:

• Margin selection: simple baseline that’s usually almost best 

arg maxx̃∈𝒰 U(x̃; fcurrent)

U(x̃; f) = pf(most likely class for x̃) − pf(second most likely class for x̃)

(from our NeurIPS-22 paper)

https://arxiv.org/abs/2206.12569

Low-budget setting
• Very early in training, predictor is useless

• Most active learning papers start with a big batch of random points

• Early on, uncertainty selection random selection

fcurrent

≤

Uncertainty-based methodsRepresentation-based 
methods

Representation methods: ProbCover

• Motivation: accuracy of a nearest-neighbour classifier on ℒ

Pr
x (̂fℒ(x) is wrong)
≤ Pr

x
(NNℒ(x) is far from x) + Pr

x
(nearby NNℒ(x) has different label than x)

≤ (1 − Pr
x

(∃x′￼ ∈ ℒ s.t. ∥x − x′￼∥ ≤ δ)) + Pr
x

(∀x′￼ s.t. ∥x − x′￼∥ ≤ δ, f*(x) = f(x′￼))
probabilistic coverage 

(no labels!) impurity 
(requires labels)

• Approach: choose small enough that impurity is small, 
then choose to greedily maximize the coverage

δ
ℒ

all distances in self-supervised feature space (SimCLR, DINO)

The problem with ProbCover

• Performance is very sensitive to the choice of radius !

• They suggest a heuristic for 
choosing  
to achieve a given purity level, 
but in our experience 
it’s not very reliable

δ

δ

Generalized coverage
• Probabilistic coverage is a very discrete notion: 

a point is covered or it’s not

• What about allowing “partial credit”?

Pr
x (̂fℒ(x) is wrong) = 𝔼x [𝕀 (f* (NNℒ(x)) ≠ f*(x))]

= 𝔼x [𝕀 (f* (NNℒ(x)) ≠ f*(x)) (1 − max
x′￼∈ℒ

k(x, x′￼))] + 𝔼x̃ [𝕀 (f* (NNℒ(x)) ≠ f*(x)) (max
x′￼∈ℒ

k(x, x′￼))]
≤ (1 − 𝔼x [max

x′￼∈ℒ
k(x, x′￼)]) + 𝔼x̃ [max

x′￼:f*(x′￼)≠f*(x)
k(x, x′￼)]

generalized coverage 
(no labels!)

generalized impurity 
(requires labels)

• Exactly recovers previous bound when k(x, x′￼) = 𝕀(∥x − x′￼∥ ≤ δ)

assuming k is monotonic 
in same distance as 1NN classifier

MaxHerding
• Greedily maximize the generalized coverage

• Choice of barely matters!δ

argmax
S⊆𝒰

1
N

N

∑
n=1

max
x′￼∈ℒ∪S

k(x, x′￼)

Non-greedy optimization isn’t worth it
• Maximizing the coverage is exactly kernel k-medoids

• Monotone, nonnegative, submodular: 
greedy optimization is at least 63% as good as optimal

• Non-greedy algorithm (Partitioning Around Medoids): barely better, way slower

argmax
S⊆𝒰

1
N

N

∑
n=1

max
x′￼∈ℒ∪S

k(x, x′￼)

Close connections to representation-based methods

Max Herding
Objective – Eq. (5)

Kernel !-Means
(Kernel !-Medoids)

Kernel Herding

ProbCover Coreset

!-Means
(!-Medoids) Typiclust

Stein Points

Non-greedy

(a) Max kernel fn.
– Proposition 3

(b) Top-hat fn.
– Corollary 2

(c) Linear kernel

(e) Varying δ
Coverage = 1

(f) $-Nearest
Neighbors

(d) Max. Kernel
Stein Discrepancy

Other AL Methods

Herding MethodsOur Method

…but what about later in training?

Selecting learning algorithm based on budget
• If we have a low label budget, use a representation-based method

• If we have a high label budget, use an uncertainty-based method

• …where’s the line between “low” and “high”?

• Problems:

• Algorithm can’t use uncertainty-based measures

• Requires retraining many times

• Budget regimes might not be “discrete”

• UCoverage:

• Weight the generalized coverage by an uncertainty function

 

𝔼x[U(x; f) max
x′￼∈S

k(x, x′￼)]
U(x; f)

probabilistic coverage generalized coverage uncertainty coverage

Uncertainty coverage

• UCoverage:

• Weight the generalized coverage by an uncertainty function

• UHerding:  

𝔼x[U(x; f) max
x′￼∈S

k(x, x′￼)]
U(x; f)

arg max
x̃∈𝒰

̂UCov(ℒ ∪ {x̃}) = arg max
x̃∈𝒰

1
N

N

∑
n=1

U(xn; f) max
x′￼∈ℒ∪{x̃}

k(x, x′￼)

Uncertainty Herding

• UCoverage:

• Weight the generalized coverage by an uncertainty function

• UHerding:  

• Representation-based limit: MaxHerding when is constant over

• Implement with temperature scaling

• If f is useless but calibrated, 

then entropy/margin/etc are constant

• As f improves, incorporates uncertainty more

• Uncertainty-based limit: uncertainty sampling when kernel bandwidth

• Use ; as , max UCoverage

• Implement with

𝔼x[U(x; f) max
x′￼∈S

k(x, x′￼)]
U(x; f)

arg max
x̃∈𝒰

̂UCov(ℒ ∪ {x̃}) = arg max
x̃∈𝒰

1
N

N

∑
n=1

U(xn; f) max
x′￼∈ℒ∪{x̃}

k(x, x′￼)

U(x; f) x

→ 0
k(x, x′￼) = k(∥x − x′￼∥/σ) σ → 0 → max U(x; f)

σ = min
x,x′￼∈ℒ:x≠x′￼

∥x − x′￼∥

Uncertainty Herding

UHerding works

• Theorem: UHerding on the sample nearly maximizes UCoverage on the
distribution, assuming:

• a smooth kernel function with respect to the embeddings

• embedding dimension isn’t too huge

• bounded nonnegative

• we select a small portion of the available points

U(x; f)

UHerding works

UHerding works

UHerding works

UHerding works

23

UHerding works

Close connections to other hybrid methods
• Weighted k-means (Zhdanov 2019):

• Swap k-means for greedy k-medoids

• Becomes exactly UHerding with a particular U

• ALFA-Mix (Parvaneh et al. 2022):

• Swap k-means for greedy k-medoids

• Becomes exactly UHerding with a particular U 

• BADGE (Ash et al. 2020):

• Swap k-means++ for greedy k-medoids

• Not exactly UHerding

• but behaves similarly in high-temperature / low-bandwidth limits 

• All of these methods are improved by our parameter adaptation scheme!

All of this was with images.
What about LLMs?

In-context learning

Active selection for in-context learning
• Collect labels to maximize coverage in this space, 

so new queries have good nearby in-context examples

• Several existing papers; algorithms have gotten much faster over time

Does active selection for in-context learning work?

Does active selection for in-context learning work?

Blue: statistically better than random 
Red: statistically worse than random

Does active selection for in-context learning work?

Does active selection for in-context learning work?

Changing gears slightly:
why do we need to be so careful

with DPO?

Learning dynamics

+𝒪(η2)

Learning dynamics in LLMs

Learning dynamics in LLMs

Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Other decent responses 
stay about the same

Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Ungrammatical responses 
become less likely

Other decent responses 
stay about the same

Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Ungrammatical responses 
become less likely

Other decent responses 
stay about the same

Irrelevant responses 
in the training dataset 
become more likely!

Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Ungrammatical responses 
become less likely

Other decent responses 
stay about the same

Irrelevant responses 
in the training dataset 
become more likely!

Direct preference optimization (DPO)

• Negative gradient helps the model not say y−
u

Direct preference optimization (DPO)

• Negative gradient helps the model not say

• …but if was already very unlikely, weird things happen!

• To decrease , can decrease numerator or increase denominator

y−
u

y−
u

eli

∑j elj

Learning dynamics in DPO

Desired response 
becomes less likely!

Greedy decoding 
becomes much 
more likely

Basically everything 
becomes less likely

Learning dynamics in DPO

44

Thanks!

• Active learning can help

• For low label budgets, need representation-based methods

• Smooth notions of representation help!

• For high label budgets, need uncertainty-based methods

• Uncertainty herding can smoothly adapt

• But only when “coverage” is a reasonable notion

• i.e. not for selecting points for in-context learning

• Learning dynamics can help explain preference finetuning

• Surprisingly simple negative gradient / squeezing effect explains DPO weirdness

• Overall lesson: thinking about theory can be useful :)

