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Active learning
• Data is everywhere!

• …but maybe not cleanly labeled data

• …that’s relevant to the particular task we’d like to learn 

• Pool-based active learning:

Labeled data ℒ Train
Unlabeled data 𝒰Predict

Choose points to label

Predictor

Labeling oracle

Add to labeled set

https://commons.wikimedia.org/wiki/File:Neural_network.svg
https://commons.wikimedia.org/wiki/File:Oracle_of_Delphi,_red-figure_kylix,_440-430_BC,_Kodros_Painter,_Berlin_F_2538,_141668.jpg


Selection criteria
• The key question: which points should we choose for labeling?

Most approaches: 
points that are uncertain 
for the current predictor

Recent approaches: 
points that are representative 

of the distribution



Uncertainty-based selection
• Myopic selection: 


• Margin selection: simple baseline that’s usually almost best 

arg maxx̃∈𝒰 U(x̃; fcurrent)

U(x̃; f ) = pf(most likely class for x̃) − pf(second most likely class for x̃)

(from our NeurIPS-22 paper)

https://arxiv.org/abs/2206.12569


Low-budget setting
• Very early in training, predictor  is useless


• Most active learning papers start with a big batch of random points

• Early on, uncertainty selection  random selection

fcurrent

≤

Uncertainty-based methodsRepresentation-based 
methods



Representation methods: ProbCover

• Motivation: accuracy of a nearest-neighbour classifier on ℒ

Pr
x ( ̂fℒ(x) is wrong)
≤ Pr

x
(NNℒ(x) is far from x) + Pr

x
(nearby NNℒ(x) has different label than x)

≤ (1 − Pr
x

(∃x′￼ ∈ ℒ s.t. ∥x − x′￼∥ ≤ δ)) + Pr
x

(∀x′￼ s.t. ∥x − x′￼∥ ≤ δ, f*(x) = f(x′￼))
probabilistic coverage 

(no labels!) impurity 
(requires labels)

• Approach: choose  small enough that impurity is small, 
then choose  to greedily maximize the coverage

δ
ℒ

all distances in self-supervised feature space (SimCLR, DINO)



The problem with ProbCover

• Performance is very sensitive to the choice of radius !


• They suggest a heuristic for 
choosing  
to achieve a given purity level, 
but in our experience 
it’s not very reliable

δ

δ



Generalized coverage
• Probabilistic coverage is a very discrete notion: 

a point is covered or it’s not


• What about allowing “partial credit”?

Pr
x ( ̂fℒ(x) is wrong) = 𝔼x [𝕀 (f* (NNℒ(x)) ≠ f*(x))]

= 𝔼x [𝕀 (f* (NNℒ(x)) ≠ f*(x)) (1 − max
x′￼∈ℒ

k(x, x′￼))] + 𝔼x̃ [𝕀 (f* (NNℒ(x)) ≠ f*(x)) (max
x′￼∈ℒ

k(x, x′￼))]
≤ (1 − 𝔼x [max

x′￼∈ℒ
k(x, x′￼)]) + 𝔼x̃ [ max

x′￼:f*(x′￼)≠f*(x)
k(x, x′￼)]

generalized coverage 
(no labels!)

generalized impurity 
(requires labels)

• Exactly recovers previous bound when k(x, x′￼) = 𝕀(∥x − x′￼∥ ≤ δ)

assuming k is monotonic 
in same distance as 1NN classifier



MaxHerding
• Greedily maximize the generalized coverage

• Choice of  barely matters!δ

argmax
S⊆𝒰

1
N

N

∑
n=1

max
x′￼∈ℒ∪S

k(x, x′￼)



Non-greedy optimization isn’t worth it
• Maximizing the coverage is exactly kernel k-medoids


• Monotone, nonnegative, submodular: 
greedy optimization is at least 63% as good as optimal


• Non-greedy algorithm (Partitioning Around Medoids): barely better, way slower

argmax
S⊆𝒰

1
N

N

∑
n=1

max
x′￼∈ℒ∪S

k(x, x′￼)







Close connections to representation-based methods

Max Herding 
Objective – Eq. (5)

Kernel !-Means
(Kernel !-Medoids)

Kernel Herding

ProbCover Coreset

!-Means 
(!-Medoids) Typiclust

Stein Points

Non-greedy

(a) Max kernel fn.
– Proposition 3

(b) Top-hat fn.
– Corollary 2

(c) Linear kernel

(e) Varying δ
Coverage = 1

(f) $-Nearest 
Neighbors

(d) Max. Kernel
Stein Discrepancy 

Other AL Methods

Herding MethodsOur Method



…but what about later in training?



Selecting learning algorithm based on budget
• If we have a low label budget, use a representation-based method

• If we have a high label budget, use an uncertainty-based method


• …where’s the line between “low” and “high”?

• Problems:

• Algorithm can’t use uncertainty-based measures

• Requires retraining many times

• Budget regimes might not be “discrete”



• UCoverage: 


• Weight the generalized coverage by an uncertainty function 

 

𝔼x[U(x; f ) max
x′￼∈S

k(x, x′￼)]
U(x; f )

probabilistic coverage generalized coverage uncertainty coverage

Uncertainty coverage



• UCoverage: 


• Weight the generalized coverage by an uncertainty function 


• UHerding:  

𝔼x[U(x; f ) max
x′￼∈S

k(x, x′￼)]
U(x; f )

arg max
x̃∈𝒰

̂UCov(ℒ ∪ {x̃}) = arg max
x̃∈𝒰

1
N

N

∑
n=1

U(xn; f ) max
x′￼∈ℒ∪{x̃}

k(x, x′￼)

Uncertainty Herding



• UCoverage: 


• Weight the generalized coverage by an uncertainty function 


• UHerding:  

• Representation-based limit: MaxHerding when  is constant over 

• Implement with temperature scaling

• If f is useless but calibrated, 

then entropy/margin/etc are constant

• As f improves, incorporates uncertainty more


• Uncertainty-based limit: uncertainty sampling when kernel bandwidth 

• Use ; as , max UCoverage 


• Implement with 

𝔼x[U(x; f ) max
x′￼∈S

k(x, x′￼)]
U(x; f )

arg max
x̃∈𝒰

̂UCov(ℒ ∪ {x̃}) = arg max
x̃∈𝒰

1
N

N

∑
n=1

U(xn; f ) max
x′￼∈ℒ∪{x̃}

k(x, x′￼)

U(x; f ) x

→ 0
k(x, x′￼) = k(∥x − x′￼∥/σ) σ → 0 → max U(x; f )

σ = min
x,x′￼∈ℒ:x≠x′￼

∥x − x′￼∥

Uncertainty Herding



UHerding works

• Theorem: UHerding on the sample nearly maximizes UCoverage on the 
distribution, assuming:

• a smooth kernel function with respect to the embeddings

• embedding dimension isn’t too huge

• bounded nonnegative 

• we select a small portion of the available points

U(x; f )



UHerding works



UHerding works



UHerding works



UHerding works
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UHerding works



Close connections to other hybrid methods
• Weighted k-means (Zhdanov 2019):

• Swap k-means for greedy k-medoids

• Becomes exactly UHerding with a particular U


• ALFA-Mix (Parvaneh et al. 2022):

• Swap k-means for greedy k-medoids

• Becomes exactly UHerding with a particular U 

• BADGE (Ash et al. 2020):

• Swap k-means++ for greedy k-medoids

• Not exactly UHerding

• but behaves similarly in high-temperature / low-bandwidth limits 

• All of these methods are improved by our parameter adaptation scheme!



All of this was with images. 
What about LLMs?



In-context learning



Active selection for in-context learning
• Collect labels to maximize coverage in this space, 

so new queries have good nearby in-context examples


• Several existing papers; algorithms have gotten much faster over time



Does active selection for in-context learning work?



Does active selection for in-context learning work?

Blue: statistically better than random 
Red: statistically worse than random



Does active selection for in-context learning work?



Does active selection for in-context learning work?



Changing gears slightly: 
why do we need to be so careful 

with DPO?



Learning dynamics

+𝒪(η2)



Learning dynamics in LLMs



Learning dynamics in LLMs



Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Other decent responses 
stay about the same
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Ungrammatical responses 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Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Ungrammatical responses 
become less likely

Other decent responses 
stay about the same

Irrelevant responses 
in the training dataset 
become more likely!



Learning dynamics in supervised finetuning

Desired response 
becomes more likely

Ungrammatical responses 
become less likely

Other decent responses 
stay about the same

Irrelevant responses 
in the training dataset 
become more likely!



Direct preference optimization (DPO)

• Negative gradient helps the model not say y−
u



Direct preference optimization (DPO)

• Negative gradient helps the model not say 

• …but if  was already very unlikely, weird things happen!


• To decrease , can decrease numerator or increase denominator

y−
u

y−
u

eli

∑j elj



Learning dynamics in DPO

Desired response 
becomes less likely!

Greedy decoding 
becomes much 
more likely

Basically everything 
becomes less likely



Learning dynamics in DPO
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Thanks!

• Active learning can help

• For low label budgets, need representation-based methods

• Smooth notions of representation help!


• For high label budgets, need uncertainty-based methods

• Uncertainty herding can smoothly adapt


• But only when “coverage” is a reasonable notion

• i.e. not for selecting points for in-context learning


• Learning dynamics can help explain preference finetuning

• Surprisingly simple negative gradient / squeezing effect explains DPO weirdness


• Overall lesson: thinking about theory can be useful :)


