
Danica Sutherland    UBC + Amii   (she/her)

Scaling Graph Transformers 
with Expander Graphs

Hamed Shirzad 
UBC

Ameya Velingker 
Google

Balaji Venkatachalam 
Google → Meta

Ali Sinop 
Google


(Exphormer only)

Honghao Lin 
CMU


(Spexphormer only)

David Woodruff 
CMU + Google


(Spexphormer only)

based on:

Exphormer: Scaling Graph Transformers with Expander Graphs (ICML 2023; arXiv:2303.06147) 
Even Sparser Graph Transformers (Spexphormer; not quite on arXiv yet, but soon!)


with:

SFU VCR/AI seminar, June 2024



Learning on graphs

2

Molecular 
Graphs

Knowledge 
Graphs

Social 
Network 
Graphs

Road Network Graphs



Message-passing neural networks

• Features at each node , maybe also each edge  

• Message from node  to node :  for some NN  

•
New features   for some NN 

xi ei→j

j i mj→i = fe(xj, xi, ej→i) fe

x+
i = fv(xi, ∑

j

mj→i) fv
Image from https://distill.pub/2021/gnn-intro/



• Information only propagates along the graph edges 
• What if there are long-range dependencies? 

• Over-smoothing 
• In deeper layers, all node features often 

end up basically the same as each other 

• Over-squashing

Problems with message-passing neural nets

Images from https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en and Long-Range Graph Benchmark

https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en


Self-attention layers

Image from https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

a1→2 a2→2 a3→2

x1 x2 x3

x+
2 = ∑

j

mj→2

Q2 = WQx2

K1 = WKx1 K2 = WKx2 K3 = WKx3

V3 = WV x3V2 = WV x2V1 = WV x1

m1→2 = a1→2V1 m2→2 = a2→2V2 m3→2 = a3→2V3

a⋅→2 = softmax(K⊤Q2/ d)

Looks like message-passing 
over the full graph



Positional encodings for sequences

• Problem: the order of the sequence is lost! 
• Solution: add features for positional encodings that tell you “where you are” 
• “Default” version: trigonometric features



Positional encodings

• Trigonometric functions: eigenfunctions of Laplacian on Euclidean space

Images from https://maths-people.anu.edu.au/~hassell/efns.colloq.pdf



Positional encodings

• Trigonometric functions: eigenfunctions of Laplacian on Euclidean space 
• What should we do so that a self-attention layer “knows” about the 

structure of a graph? 

• “Default” choice: eigenvectors of the graph Laplacian L = D − A





Learned positional encodings (Kreuzer et al. 2021)

• Can be helpful to post-process the positional encodings further



Spectral Attention Networks (SAN) (Kreuzer et al. 2021)

• Self-attention layers with 
learned positional 
encodings 
• Intersperse with MLPs 

processing each node 
feature independently, as 
in Transformer encoders



Full attention and position encodings help



Our work!

Positional and structural encodings

Use global attention 
✅ Computation graph can be different 

from input graph 

✅ Long-range modeling 

✅ Universal Approximation Theorem 

❌ Knowledge of graph structure 

❌ Loss of inductive bias from graph 

❌ Inefficient computation: O(N2)

Message passing vs graph transformers

Update across edges of input graph 
✅ Capture inductive bias from input graph topology 

✅ Efficient computation: O(N + M) 

❌ Difficulty with long-range dependencies 

❌ Oversmoothing, oversquashing

Message passing networks Graph transformers



GraphGPS 
(Rampášek et al., 2022)

• Framework to 
combine transformer 
layers with message-
passing layers 
• MPNN layers better 

at preserving graph 
structure 
• Transformer layers 

better at certain 
kinds of dependence



Sparse attention and Exphormer



Reducing the  attention costN2

• Lots of work on more-efficient attention mechanisms for sequences 
• GraphGPS paper tried to apply some 

to graphs…but it hurt accuracy a lot 
• Need something designed for graphs

Image from “Efficient Transformers: A Survey” (Tay et al.)



Attention graph

• We’ll take an approach of “sparse attention” 

• Start by “running” attention along the graph edges (both ways) 
• Adjacent nodes are reasonably likely to “matter” to each other 

• Full transformers augment this attention graph with the complete graph 
• Every node connected to every other 
• Allows easy long-range communication 
• Adds too many edges! Makes it slow + memory-hungry



Augmenting attention with virtual nodes

• Add a “virtual” node (or four) that’s connected to 
every graph node 
• Now any node can “talk to” any other node in 

at most 2 hops 
• Also common in MPNNs 

• Problem: oversquashing



Expander graphs

• How can we connect far-away parts of the graph without severe 
oversquashing? 
• We want a sparse approximation to the complete graph 
• No too many edges 
• Can get from anywhere to anywhere quickly 
• Have many routes from place to place, to avoid oversquashing 

• Mathematical concept called expander graphs 
• Approximate the complete graph (in many senses), with low degree



Expander graphs



Expander graphs

https://www.quantamagazine.org/new-proof-shows-that-expander-graphs-synchronize-20230724/



Constructing expander graphs

• How to make an expander graph with max degree : 

• Sample  random Hamiltonian cycles, combine these as edges 

• Check (from the eigenvalues of the Laplacian) if it’s an expander 
• If not, try again (happens rarely)

≤ d
d/2



Components of Exphormer
Original graph 
• Preserve locality from the 

original graph

23

Expander graph 
• Random walk mixing 
• Constant degree 
• O(N) edges

Virtual node(s) 
• "Storage sink" 
• Short connections 

between all node pairs

Exphormer: Combine all three 
to form the interaction graph

Use edge features to let the network 
know which kind of edge it is



Universal approximation



Experimental Results: Various Datasets

25



Experimental Results: Long-Range Benchmark

26



Experimental Results: Larger Graphs

27



What if the original graph is too big?



Memory usage

• GPUs only have so much memory available 

• Exphormer only adds  extra edges to the original graph 

• But what if the original graph already had too many edges to run on? 
• ogbn-proteins has 132,000 nodes (fine) but almost 40,000,000 edges! 

• Can easily run out of GPU memory even with just original-graph attention

𝒪(N)



Which edges matter?

• Attention on graphs tends to be kind of sparse, ish 
• If we could throw away unimportant edges beforehand, 

we could afford to do our optimization on the rest 

• But how to tell which edges matter if we can’t afford to train? 
• Idea: train another network to tell us which edges matter



Attention score estimation

• Idea I: narrow nets are much cheaper in memory than wide nets 
    (lower-dimensional hidden features) 
• Idea II: CPU memory is much cheaper than GPU memory 

• Train a narrow network on CPU to tell which edges matter



Attention scores agree across widths

Caveat I: adding layer normalization to value matrices, to make attention scores more comparable 
Caveat II: using an annealed temperature schedule to encourage sparser attention



Theory

• Have some partial results about existence of narrow transformers 
approximating wide ones 

• The first attention layer can be well-approximated with only  
width 

• Following MLP + attention layers…not totally sure 😅

log(N)



Choosing the important edges

• Once we know attention scores, how do we decide which to keep? 

• Sample  edges for each node proportionally to the attention score 

• Do different samples per graph, and resample in each epoch 

• Theory: approximates attention matrix in spectral norm well 
           (extending proof of Achlioptas, Karnin, Liberty, NeurIPS 2013) 

• Using reservoir sampling makes it run much faster than default implementation 

• Once we have the sparsified graph, 
run a wide transformer (on GPU) on only that sparsified graph

k





Advantage: regular graph

• Irregularly-shaped matrix multiplications are slow on GPU 

• If each node has exactly  neighbours, we instead can do batched 
matrix multiplication with consistent shapes (much faster!)

k



Advantage: neighbourhood sampling

• Can do minibatching by 
• Start with some “core nodes” 
• Include their entire “receptive field” of other nodes that affect them 

• Compared to other minibatching strategies on graphs, 
guarantees that minibatching doesn’t bias the process









Thanks!

• Graph transformers: like regular transformers, but on graphs 
• Full pairwise attention way too expensive for large graphs 

• Exphormer 
• Augment attention graph with expanders + maybe virtual nodes 

• Spexphormer 
• Sparsify the augmented graph with a pilot network


