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Learning on graphs
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Message-passing neural networks
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. Features at each node x;, maybe also each edge ¢;_,;

. Message from node j to node i: m;_,; = f,(x;, X;, ;_,;) for some NN f,

New features x;" = Z m;_,;) for some NN f,



Problems with message-passing neural nets

e Information only propagates along the graph edges

« What if there are long-range dependencies? V€

e Over-smoothing

e In deeper layers, all node features often
end up basically the same as each other

e Over-squashing



https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en

Looks like message-passing

Self-attention layers over the full graph

output #1 output #2

addition - addition - x2+ o Z mj )
R .
J

Self-attention
b | |
multiplication | 0.0 | 0.0 ‘ 00 | <«— multiplication | 2.0 ‘ 8.0 | 00 | <— multiplication | 0.0 | 0.0 ‘ 00 | <«—
= W,x ! ! T
Q2 query Q 2 al _)2 score Cl2 _>2 score 613 _>2 score

— [2]z]2] - [ 2/;@ - [l

| H.op = softmax (K"

key Vl va=Iue Wv'xl V2 vﬁe WV’XZ key V3 ﬁe WV'X3
o[+ [+]  [lz[=] [ I T [2]=]"]
Ky = Wix, ] K> = Wix, ! K3 =t Wixs
| | |
input #1 input #2 input #3

Xl nnnn XZ nnnn X3 nnnn




Positional encodings for sequences

e Problem: the order of the sequence is lost!
e Solution: add features for positional encodings that tell you “where you are”

e “Default” version: trigonometric features

PE(pos,2i) = Sin(pos/l()()()()z’i/dmodel)
PE(pos,2i+1) = cos(pos/ 10()()()2’i/dmodel)




Positional encodings

e Trigonometric functions: eigenfunctions of Laplacian on Euclidean space

Eigenvalues and eigenfunctions Examples
of the Laplacian e The interval |0,a|. Eigenfunctions and
Andrew Hassell eigenvalues are
2 . TnT ™
The setting tn = \/;sm a An = a
In this talk I will consider the Laplace op-
erator, A, on various geometric spaces M. e The torus Tﬁ. Eigenfunctions and eigen-
On a Euclidean domain, values are
— 0*f _ Lgiegimy ) _ P2
Af = — oI u=—_ere"”, me.



Positional encodings

e Trigonometric functions: eigenfunctions of Laplacian on Euclidean space

« What should we do so that a self-attention layer “knows” about the
structure of a graph?

» “Default” choice: eigenvectors of the graph LaplacianL =D — A
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Figure 3: Examples of eigenvalues A; and eigenvectors ¢; for molecular graphs. The low-frequency
eigenvectors @1, @o are spread accross the graph, while higher frequencies, such as @14, @15 for the
left molecule or ¢1¢, @11 for the right molecule, often resonate in local structures.



Learned positional encodings (kreuzer et al. 2021)

e Can be helpful to post-process the positional encodings further

: b " Linear | ‘Transformer & D)
,\?cr)j: Cj layer Encoder Sum pooling Node-wise LPE
W2 X6 . mxm - y . o
¢m1 2 Xm k Xm k Xm

Number of features k Number of features k



Spectral Attention Networks (SAN) reuzer et al. 2021)

 Self-attention layers with
learned positional
encodings

e Intersperse with MLPs
processing each node
feature independently, as
in Transformer encoders

| Pre-computed steps 0(mkE)

(a) Inputgraph (b) m eigenvectors

A: Adjacency matrix The normalized eigenvectors

L: Laplacian matrix ¢ of L are computed and

N: number of nodes sorted such that ¢, has the
lowest eigenvalue and ¢,,,_;

has the m-th lowest.

Compute the first

E: number of edges.
ny: Number of input
node features

€o: Number of input edge
features

The complexity is O(mE).

Node colormap
-max max
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Fully connect the
(f)
graph
An edge is added to all pairs
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X7 X% x| given its own embedding.
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Node features X
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.~ Learned positional encoding (LPE) steps O(m?N)
Generate node-wise

(<) eigenvector PE

Ai: The i-th lowest eigenvalue
¢;: The normalized
eigenvector associated to A;
¢;,;: The j-th row of ¢,

For each node j, generate an
initial positional encoding (PE)
using the m-first ¢ and A.

If a graph has less than m
nodes, add a masked padding.

wt Yyy8ua| aduanbag

Input layers for the
feature

Add an MLP or linear layer
for both the node and edge
features.

(8)

O(N) N x(d-k)
d: hidden dimension
0(N?) N?xd

Generate node-wise
(d)

embedding O (Nm?

For each node i, generate a
learned positional embedding
(LPE) of size k.

A linear layer is applied,
followed by a multi-layer
Transformer encoder with
self-attention on the
sequence length of size m.

Concatenate node
(h)
features

Concatenate the node
features from the MLP to
those from the LPE.

:

(i)

. Main Transformer steps O(N?)

(e) Pool the LPE

Use a sum or mean pooling on
the dimension of size m of the
node-wise embedding.

The result is the LPE matrix,
where each line i represents
the learned positional
encoding of the i-th node.

LPE
Number of features k

\[V

N x k

Apply the main

transformer

Attention between all pairs of
nodes features and the edge
between them. Different
linear projections K, Q, E are
used to compute attention for
real edges and added edges.

encoders
on the dimension of
size [
O(N?)
Prediction Output
layer N xd

Figure 1: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.



Full attention and position encodings help

Model details ZINC PATTERN : CLUSTER MOLHIV
Attention LPE MAE % ACC % ACC % ROC-AUC Best

0 267 +0.032 83.613 +0.663 75.683 +0.098 7346+ 0.71
81.329 +2.150

0 198 +0.004 75.738 +0.106 76.61+ 0.62

0.392 +£0.055 73.84 + 1.80

Worst

Figure 6: Ablation study on datasets from [15, 21] for the node LPE and full graph attention, with
no hyperparameter tuning other than ~y taken from Figure 5, For a given dataset, all models use the
same hyperparameters, but the hidden dimensions are adjusted to have ~ 500k learnable parameters.
Means and uncertainties are derived from four runs, with different seeds (except MolHIV).




Message passing vs graph transformers

Message passing networks Graph transformers

Use global attention
Update across edges of input graph o

W4 Computation graph can be different
Capture inductive bias from input graph topology . PHLAHON BTap |

from input graph
Efficient computation: O(N + M)
Long-range modeling

X Difficulty with long-range dependencies
Universal Approximation Theorem

o [)( Knowledge of graph structure ]

Positional and structural encodings

X Oversmoothing, oversquashing

/)( Loss of inductive bias from graph\

Our work! 4

e( Inefficient computation: O(N?2) y




Positional encodings (PE) | Structural encodings (SE) § Graph features GPS layers

Local PE as node features. Sum over the rows
of non-diagonal elements of the random walk
matrix. w,,, = %;(D71A)™ — w,,.

Global PE as node features. Eigenvectors of
the Laplacian ¢, associated to the k-lowest
non-zero eigenvalues.

Relative PE as edge features. Pair-wise
difference of local/global PE. Shown below is

the gradient of the eigenvectors Vg,,.

GraphGPS

(Rampasek et al., 2022)

e« Framework to s
combine transformer );-f g - V;"r
layers with message- { £ o ,,{'“a*
passing layers z r“g

« MPNN layers better " ”Z,:y:;,.;b;;;m I
at preserving graph '
structure T | LS

DeepSet allows to work varying number of
eigenvectors, and uses augmentation to
handle the sign ambiguity of eigenvectors.
SignNet is a sign-invariant network well
adapted to work with a varying number of
sign-ambiguous eigenvectors.

e Transformer layers
better at certain
kinds of dependence

MPNN layer can be any model acting on a given node’s
neighbourhood with edge features.

Transformer layer can be any fully-connected layer that
works with a variable number of input nodes without
edge features.

L-layers are repeated, with [ being the current layer’s
index.

Residual connections for the MPNN and Transformer

Nodes features X" are
concatenated to the
positional features.

Local SE as node features. Diagonal of the
m-steps random walk matrix

w,, = diag((D~14)™).
Global SE as node features. k-lowest
eigenvalues of the Laplacian 4.

Global features g" are
concatenated to the node
features.

Edge features E” are
concatenated to the relative

Relative SE as edge features. Boolean
indicating if two nodes belong to the same

sub-structure. PE/SE. layers are omitted for clarity.
MLPs mix the node/edge features with the PE and SE.
(D
D D
- E!
- L a & _ B F N | X L
- ' - "Any MPNN Iayer
' I I
S-nnb 3-star - I ' |
N g P Q{ : GatedGCN [l wlll />
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i Anyglobal \|
I
2% - | Transformer
@ - -
: :
I
] BigBird ,'
N
7’
Xl
D D MLP
& Concatenation
Batch-norm normalizes the encoding across MLP processes the node +  Sum

MLP Multi-layer perceptron
PNA Principal neighbourhood aggregation
GINE Graph isomorphism network with edges
GCN Graph convolutional network

Node features

Edge features
) Learnable module

i- _-j Choice of multiple medules

features and edge features
before the GPS layers.

graphs for each A; and w,,, to ensure they
are within the same range.

MLP is a multi-layer perceptron that
processes the encodings to learn a
meaningful structure.

DeepSet allows to work varying number of
eigenvalues.

Figure 1: Modular GPS graph Transformer, with examples of PE and SE. Task specific layers for
node/graph/edge-level predictions, such as pooling or output MLP, are omitted for simplicity.



Sparse attention and Exphormer



Reducing the N attention cost

e Lots of work on more-efficient attention mechanisms for sequences

« GraphGPS paper tried to apply some

to graphs...but it hurt accuracy a lot

 Need something designed for graphs

Charformer
(Tay et al., 2021)

TokenLearner

Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)
Transformer-XL

, Nystromformer
(Dai et al., 2019)

(Xiong et al., 2019)

Memory /
Downsampling

Memory

Compressed
(Liu et al., 2018)

Recurrence

Compressive

Transformer

Set Transformer
(Rae et al.,, 2018)

(Lee et al., 2019)
Clusterformer

T Rou;[mg (Wang et al., 2020)
. ransformer
Funnel P(()Z?Imgflogg)er G, A Reformer
Transformer angetal, (Kitaev et al.,, 2020)
aaerformer \ (aietal, 2020)
' \ ETC Big Bird

(Ainslie et al., 2020) (Zaheer et al., 2020)

Low-Rank Transformer

(Winata et al., 2020) Longformer Swin .
(Beltagy et al, 2020)  Transformer , Clustered Attention
. Sinkhorn (Vyas et al., 2020)
LOW Rank / (Liu et al., 2020) f
Transformer
Linformer Long Short

Tay et al., 2020b)
(Wang et al., 2020b) Transformer

(Zhu et al., 2021)

Kernels Fixed/Factorized/ |

Adapti
Random Patterns o

_ e Sparse
Random Feature Attention ynthesizer Transformer
(Peng et al., 2021) (Tay et al., 2020a) lockwi f CC-Net GShard .
Blockwise Transtormer (Huang et al., 2018) (Lepikhin et al., 2020) (Correia et al., 2019)
(Qiu et al,, 2019)
Linear S arse G
LaM
Transformer Sparse Transformer P (Du et al,, 2021)
(Katharopoulos et al., 2020) Image Transformer (Child et al., 2019) Switch .
P t al.,, 2018
(Permaretel, 207) Transformer Product Key
Axial Transformer (Fedus et al., 2021) Memory

(Ho et al., 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)



Attention graph

« We'll take an approach of “sparse attention”

o Start by “running” attention along the graph edges (both ways)

e Adjacent nodes are reasonably likely to “matter” to each other

e Full transformers augment this attention graph with the complete graph
e Every node connected to every other
e Allows easy long-range communication

e Adds too many edges! Makes it slow + memory-hungry



Augmenting attention with virtual nodes

e Add a “virtual” node (or four) that’s connected to
every graph node

« Now any node can “talk to” any other node in
at most 2 hops

e Also common in MPNNs

e Problem: oversquashing



Expander graphs

« How can we connect far-away parts of the graph without severe
oversquashing?

« We want a sparse approximation to the complete graph
« No too many edges
e Can get from anywhere to anywhere quickly

« Have many routes from place to place, to avoid oversquashing

« Mathematical concept called expander graphs

o Approximate the complete graph (in many senses), with low degree



Expander graphs

Theorem 4.1. A d-regular e-expander G on n vertices spec-
trally approximates the complete graph K,, on n vertices:*

1 1 1
l—€e)—Lx < =L~ <(1 — L.
( G)nK_dG_('l‘E)nK

Spectral approximation 1s known to preserve the cut struc-
ture 1in graphs. As a result, a sparse attention mechanism
based on expander edges retains spectral properties of the
full attention mechanism: cuts, vertex expansion, and so on.

Lemma 4.2. (Alon, 1986) Let G = (V, E) be a d-regular

e-expander graph on n = |V| nodes. For any initial distri-
bution 70 : V — Rt and any § > 0, ©(t) satisfies

[t — 2l <0

as long as t = Q (+ log(n/9)).

Theorem 4.3. (Alon, 1986) Suppose G = (V, E) is a d-

regular e-expander graph on n vertices. Then, for every
vertex v and k > 0, the k-hop neighborhood B(v,r) =
{weV :dv,w) <k} has

|B(v,r)| > min{(1 + ¢)*,n}

for some constant ¢ > 0 depending on d, €. In particular,
we have that diam(G) = Og4 (logn).

Corollary 4.4. If a sparse attention mechanism on n nodes
is a d-regular e-expander graph, then stacking O4 .(logn)
transformer layers models all pairwise node interactions.



Expander graphs

CS366: Graph Partitioning and Expanders

[general info] [lecture notes] [exams and projects]

what's new

e 2/14 midterm

general information

Instructor: Luca Trevisan, Gates 474, Tel. 650 723-8879, email trevisan at stanford dot edu

Expander graphs turn out to have a slew of applications not only in
math but also in computer science and physics. They can be used to
create error-correcting codes and to figure out when simulations
based on random numbers converge to the reality they are trying to
simulate. Neurons can be modeled in a graph that some researchers
believe forms an expander, due to the limited space for connections
inside the brain. The graphs are also useful to geometers who try to

understand how to traverse complicated surfaces, among other

problems.



Constructing expander graphs

« How to make an expander graph with max degree < d:

« Sample d/2 random Hamiltonian cycles, combine these as edges

e Check (from the eigenvalues of the Laplacian) if it’s an expander

i

o If not, try again (happens rarely)




Components of Exphormer

Original graph Expander graph Virtual node(s)
e Preserve locality from the « Constant degree » "Storage sink"
original graph « O(N) edges . 2-hop connections

e Short connections between

between all node pairs

most nodes (randomized)

Use edge features to let the network
know which kind of edge it is

O
O- O
O
Y

Exphormer: Combine all three
7 to form the interaction graph




Universal approximation

Theorem E.3. Suppose H is the attention graph of EXPHORMER (which contains n graph nodes and potentially more
virtual nodes), augmented with self loops on all nodes. Suppose H satisfies at least one of the following:

1. H contains at least one node which is connected to all n graph nodes (i.e., at least one virtual node is included).

2. The underlying expander graph of H contains a Hamiltonian path.

Then, it follows that a sparse transformer model, with positional encodings and an attention mechanism following H, can
universally approximate continuous functions f : [0, 1]X™ — R%X™ That is, for any 1 < p < oo and € > 0, there exists a
sparse transformer network g, which uses the attention graph H and some positional encodings, such that P (f, g) < e.



Experimental Results: Various Datasets

Table 1. Comparison of EXPHORMER with baselines on various datasets. Best results are colored 1n first, second, third.

Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN
Accuracy T Accuracy T Accuracy T Accuracy T Accuracy T
GCN (Kipf & Welling, 2017) 55.714+0.381 81.0 90.714+0.218 68.50 £ 0.976 71.89 + 0.334
GIN (Xuetal., 2018) 55.26+1.527 88.98+0.557 96.49+0.252 64.72 4 1.553  85.39 £ 0.136
GAT (Velickovic et al., 2018) 64.22+0.455 92.1 £0.242 95.54+0.205 70.59 4+ 0.447  78.27 £ 0.186
GatedGCN (Bresson & Laurent, 2017; 67.31+0.311 92.2340.65 07.3440.143 73.84 4+ 0.326 85.57 + 0.088

Dwivedi et al., 2020)

PNA (Corso et al., 2020) 70.354+0.63 - 97.9440.12 - —

DGN (Beaini et al., 2021) 72.844+0.417 — — — 86.68+0.034
CRaWIl (Toenshoft et al., 2021) 69.01+0.259 — 97.94+0.050 — —_

GIN-AK+ (Zhao et al., 2022b) 72.1940.13 — - - 86.85+0.057
SAN (Kreuzer et al., 2021) — — —_ 76.69+0.65 86.58+0.037
K-Subgraph SAT (Chen et al., 2022a) - - — 77.8640.104 86.8510.037
EGT (Hussain et al., 2021) 68.704+0.409 98.17+0.087 79.23+0.348 36.82+0.020
GraphGPS (Rampisek et al., 2022) 72.30+0.356 93.50+0.41 98.05+0.126 78.02+0.180 86.691+0.059
EXPHORMER (ours) 74.69+0.125 94.02 + 0.209  98.55 4+ 0.039 78.07 £+ 0.037 86.741+0.015

25



Experimental Results: Long-Range Benchmark

Table 3. Comparison of EXPHORMER with baselines from the Long-Range Graph Benchmarks (LRGB, Dwivedi et al., 2022). Best results
are colored 1in first, second, third.

Model PascalVOC-SP COCO-SP Peptides-Func  Peptides-Struct PCQM-Contact
F1 score 1 F1 score 1 AP 1 MAE | MRR 1
GCN 0.1268 4+ 0.0060  0.0841 4+ 0.0010  0.5930 + 0.0023 0.3496 4+ 0.0013 0.3234 4 0.0006
GINE 0.1265 4+ 0.0076  0.1339 4+ 0.0044  0.5498 4+ 0.0079 0.3547 4+ 0.0045 0.3180 4= 0.0027
GatedGCN 0.2873 4+ 0.0219  0.2641 + 0.0045  0.5864 + 0.0077 0.3420 4+ 0.0013 0.3218 4= 0.0011
GatedGCN+RWSE  0.2860 4+ 0.0085  0.2574 4+ 0.0034  0.6069 4+ 0.0035 0.3357 4 0.0006 0.3242 + 0.0008
Transformer+LapPE 0.2694 + 0.0098  0.2618 £ 0.0031  0.6326 £ 0.0126 0.2529 + 0.0016 0.3174 4+ 0.0020
SAN+LapPE 0.3230 + 0.0039  0.2592 4+ 0.0158* 0.6384 4+ 0.0121 0.2683 4 0.0043 0.3350 -+ 0.0003
SAN+RWSE 0.3216 £ 0.0027  0.2434 £+ 0.0156* 0.6439 + 0.0075 0.2545 4+ 0.0012 0.3341 + 0.0006
GraphGPS 0.3748 + 0.0109 0.3412 £+ 0.0044  0.6535 £+ 0.0041 0.2500 £ 0.0005 0.3337 £ 0.0006
Exphormer (ours) 0.3975 + 0.0037  0.3455 + 0.0009  0.6527 + 0.0043 0.2481 £+ 0.0007 0.3637 + 0.0020

26



Experimental Results: Larger Graphs

Table 4. Accuracy of models with different attention mechanisms on transductive graph datasets (numbers in top rows, other than arXiv,
are from Chen et al., 2022b). Chen et al. did not report NAGphormer results on this dataset.

Model ogbn-arxiv Computer Photo CS Physics
SAN OOM 89.83+0.16 94.86 £0.10 94.51 & 0.15 OOM
GraphGPS OOM OOM 95.06 & 0.13 93.93 4+ 0.12 OOM
NAGphormer NA 9122 +£0.14 95494+ 0.11 95.75+£0.09 97.34 £ 0.03
EXPHORMER 7244 4+0.28 91.59+0.31 95.27+042 95.77+0.15 97.16+0.13

27



What if the original graph is too big?



Memory usage

« GPUs only have so much memory available

« Exphormer only adds O(/NV) extra edges to the original graph

e But what if the original graph already had too many edges to run on?
e ogbn-proteins has 132,000 nodes (fine) but almost 40,000,000 edges!

e Can easily run out of GPU memory even with just original-graph attention



Which edges matter?

e Attention on graphs tends to be kind of sparse, ish

o If we could throw away unimportant edges beforehand,
we could afford to do our optimization on the rest

e But how to tell which edges matter if we can’t afford to train?

e ldea: train another network to tell us which edges matter



Attention score estimation

e Idea I: narrow nets are much cheaper in memory than wide nets
(lower-dimensional hidden features)

e Idea lI: CPU memory is much cheaper than GPU memory

Node characteristics

available

nodes « | cores $ s CPU s storage s GPU
memory

4000G or 2 Xx AMD Rome 7502 @ 2.50 GHz
3 64 1 x 960G SSD

4096000M 128M cache L3

2009G or 2 Xx AMD Rome 7532 @ 2.40 GHz
33 64 1 x 960G SSD

2057500M 256M cache L3

2 x AMD Milan 7413 @ 2.65 GHz 128M | 1 x SSD of 3.84 | 4 x NVidia A100SXM4 (40 GB memory),

159 48 498G or 510000M

cache L3 B connected via NVLink

e Train a narrow network on CPU to tell which edges matter

[



Attention scores agree across widths

Amazon-Photo Dataset with Expanders

Actor Dataset without Expanders Actor Dataset with Expanders Amazon-Photo Dataset without Expanders
0.20
N
0.10 0.20
0 08 0.15
0.15
0.06
0.10
0.10
0.04
N ok QA o © B ASEPPR A o> <& o© \O
0\“0( 20 \ o\‘o( 2o " © 0\&0( oo *© 0\@ PR
(a) (b) (c) (d)

Figure 3: Energy distance between the attention scores of various networks to a network of width 64. “Uniform”
refers to the baseline placing equal scores to each neighbor, while “random” refers to the baseline with uniformly
distributed logits. The remaining bars refer to networks trained on the appropriately labeled width.

Caveat I: adding layer normalization to value matrices, to make attention scores more comparable

Caveat Il: using an annealed temperature schedule to encourage sparser attention



When can we approximate attention?

e Narrow transformers that approximate wide ones exist

 Can approximate attention scores to 1 + O(¢) relative error

. . . logn
when making the attention layers width © >
£

« Key tool: Johnson-Lindenstrauss transform of queries and keys

e Doesn’t help with MLP layers; without further assumptions,
need them to stay the original width
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Compressing MLP layers

o If post-activations are exactly low-rank, get good compression
« Many datasets have low-dimensional input features
e Late layers might converge to be just the class ID

e Rank collapse phenomenon (~oversmoothing)

o If approximately low-rank,
can approximate everything except for the activation function part



Compressing MLP layers

 If we have d well-separated clusters,
can compress everywhere to width d

« Happens as embeddings converge to class IDs
« Happens in highly homophilic datasets

« Happens when there are only a few “kinds” of nodes



« Small networks have high variance

Compressing

e But good ones exist
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Dataset Tolokers Minesweeper Photo
MLP 0.730 £0.0106 0.509 +0.014 0.696 &= 0.038
GCN 0.836 = 0.007 0.898 £0.005 0.927 £ 0.002
NodeFormer 0.781 £0.001 0.867 4=0.009 0.935 + 0.004
Exphormer 0.835 =0.003 0.923 £ 0.006 0.954 = 0.002
Average Large Network | 0.844 +0.002 0.943 £0.001 0.953 4 0.004
Average Small Network | 0.821 £0.011 0.886 £0.054 0.910 & 0.016
Max Small Network 0.844 0.938 0.944
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B hidden dim = 64
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Choosing the important edges

e Once we know attention scores, how do we decide which to keep?

« Sample k edges for each node proportionally to the attention score

e Do different samples per graph, and resample in each epoch

e Theory: approximates attention matrix in spectral norm well
(extending proof of Achlioptas, Karnin, Liberty, NeurlIPS 2013)

e Using reservoir sampling makes it run much faster than default implementation

e Once we have the sparsified graph,
run a wide transformer (on GPU) with the sparsified attention graph
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Figure 2: Steps of our method. (a) The attention mechanism for the attention score estimator network combines
graph edges with an expander graph and self-loops. The expander graphs are constructed by combining a small
number of Hamiltonian cycles — here two, in red and in purple — then confirming the spectral gap is large enough.
(b) Self-attention layers 1n the estimator network use this sparse attention mechanism,; its self-attention layers
normalize V. (¢, d) Attention scores are extracted from this network for each layer, and used to sample, in (e), a
sparse directed graph, which becomes the attention graph for the final network (f). This network, with a much

larger feature dimension, does not normalize V.



Advantage: regular graph

e Irregularly-shaped matrix multiplications are slow on GPU

o If each node has exactly k neighbours, we instead can do batched
matrix multiplication with consistent shapes (much faster!)



Advantage: neighbourhood sampling
e Can do minibatching by

o Start with some “core nodes”
 Include their entire “receptive field” of other nodes that affect them

« Compared to other minibatching strategies on graphs,
guarantees that minibatching doesn’t bias the learning process
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Figure 1: Figure (a) shows a very simple synthetic graph where each node has a binary classification task of
determining whether there exists a node of the opposite color in the same connected component. This task



It saves a lot of memory
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Figure 4: Memory usage comparison: Attention Score
Estimator network and Spexphormer vs. Exphormer
with expander degrees 6 and 30. Exphormer with de-
gree 30 for the ogbn-arxiv dataset could not fit into the
memory of a 40GB GPU device, and thus the number
here 1s a lower bound.



It doesn’t cost

Table 1: Comparison of our model with other GNNs on six homophilic datasets. The reported metric 1s accuracy
for all datasets.

Model Computer Photo CS Physics WikiCS ogbn-arxiv
GCN 89.65+0.52 9270 £0.20 9292 +0.12 96.18 =0.07 7747 085 71.74 +=0.29
GRAPHSAGE 01.20+0.29 9459 +0.14 9391 +=0.13 9649 +0.06 74.77 095 71.49 +0.27
a CC u ra Cy GAT 90.78 =0.13 93.87 = 0.11 93.61 =0.14 96.17 =0.08 7691 £0.82 72.01 £ 0.20
GRAPHSAINT 900.22 +0.15 91.72+0.13 9441 +=0.09 96.43 4+ 0.05 - 68.50 4+ 0.23
NODEFORMER 8698 +0.62 9346 +035 9564 +£0.22 9645 +028 7473 +094 5990+ 0.42
GRAPHGPS 01.194+0.54 9506 +=0.13 9393 +4+0.12 97.121+0.19 78.66 =049 70.92 + 0.04
GOAT 0096 =090 9296 +=1.48 94.21 =0.38 96.24 +-0.24 77.00x=0.77 72.41 +=0.40
EXPHORMER+GCN 91.59+0.31 95274042 9577 +0.15 97.16 =0.13 7854 +0.49 72.44 + 0.28
EXPHORMER* 01.16 =0.26 9536 =0.17 95.19 +-0.26 96.40 +=0.20 78.19+0.29 71.27 +0.27
SPEXPHORMER 91.09 £0.08 9533 +0.49 95.00+0.15 96.70+=0.05 78.24+0.14 70.82 4+ 0.24
Avg. Edge Percent 7.6% 8.2% 12.8% 11.3% 8.6% 13.7%

Table 2: Comparison of our model with other GNNs on five heterophilic datasets. The reported metric is
ROC-AUC (x100) for the Minesweeper, Tolokers, and Questions datasets, and accuracy for all others.

Model Actor Minesweeper Tolokers Roman-Empire Amazon-Ratings Questions
GLOGNN 364+16 51.08+1.23 73.39+1.17 59.63 &+ 0.69 36.89 + 0.14 65.74 + 1.19
GCN 33.23+1.16 89.75£0.52 83.64 +£0.67 73.69+0.74 48.70 &+ 0.63 76.09 & 1.27
GRAPHGPS 37.1 £ 1.5 90.63 + 0.67 83.71 +0.48 82.00 £ 0.61 53.10 £ 0.42 71.73 £ 1.47
NAGPHORMER - 84.19 £ 0.66 78.32 + 0.95 74.34 + 0.77 51.26 £ 0.72 68.17 £ 1.53
NODEFORMER 369+ 1.0 86.71 = 0.88 78.10 £ 1.03 64.49 + 0.73 43.86 £+ 0.35 74.27 £ 1.46
GOAT - 81.09 £1.02 83.11+£1.04 71594 1.25 44.61 £ 0.50 75.76 £+ 1.66
EXPHORMER+GAT 38.68 +£0.38 90.74 +=0.53 83.77 +0.78 89.03 &+ 0.37 53.51 £ 0.46 73.94 £+ 1.06
EXPHORMER* 39.01 £0.69 9226 £0.56 83.53 +0.28 84.91 4+ 0.25 46.80 £+ 0.53 73.35 £ 1.78
SPEXPHORMER 38.59 £0.81 90.71 £0.17 83.34 +0.31 87.54 + 0.14 50.48 + 0.34 73.25 £ 0.41
Avg. Edge Percent 5.8% 17.8% 8.9% 31.1% 15.3% 13.8%




Model ogbn-proteins Amazon2ZM Pokec*
MLP 72.04 + 0.48 63.46 +=0.10 60.15 +0.03
GCN 72.51 £+ 0.35 83.90 =0.10 62.31 +1.13
SGC 70.31 £+ 0.23 81.21 =0.12 52.03 4+ 0.84
GCN-NSAMPLER 73.51 = 1.31 83.84 =042 63.75 = 0.77
GAT-NSAMPLER 74.63 + 1.24 85.17 = 0.32 62.32 £+ 0.65
SIGN 71.24 + 0.46 80.98 +-0.31 68.01 £+ 0.25
NODEFORMER 77.45 = 1.15 87.85 =0.24 70.32 = 0.45
SGFORMER 79.53 £+ 0.38 89.09 = 0.10 73.76 4= 0.24
SPEXPHORMER 80.65 + 0.07 90.40 = 0.03 74.73 +0.04
Memory Information for SPEXPHORMER
Memory (MB) 2232 3262 2128
Batch Size 256 1000 500
Hidden Dimension 64 128 64
Number of layers 2 2 2
Number of Parameters 79,224 300,209 83,781

Table 3: Comparative results on large graph datasets,
with ROC-AUC(x 100) reported for the ogbn-proteins
dataset and accuracy for all others. GPU memory usage,
batch sizes, hidden dimensions used to obtain these
numbers, and the total number of parameters have been

added at the bottom of the table.



Thanks!

e Graph transformers: like regular transformers, but on graphs

 Full pairwise attention way too expensive for large graphs
Exphormers: Sparse Transformers for Graphs

arXiv 2303.06147 j ] Ranked #5 Graph Classification on CIFAR10 100k j [ Ranked #4 Node Classification on COCO-SP
i State of the Art Graph Classification on MalNet-Tiny J ] Ranked #3 Graph Classification on MNIST

I Ranked #2 Link Prediction on PCQM-Contact (MRR metric)
« Augment attention graph with expanders + maybe virtual nodes

e« Exphormer

e Spexphormer

e Sparsify the augmented graph with a pilot network



