Modern Kernel Methods in Machine Learning: Part I

Danica J. Sutherland (she/her)
Computer Science, University of British Columbia
ETICS "summer" school, Oct 2022
Motivation

- Machine learning!
Motivation

- Machine learning! ...but how do we actually do it?
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! \(f(x) = w_0 + wx, \hat{y}(x) = \text{sign}(f(x)) \)
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
- Extend x...

\[f(x) = w^T (1, x, x^2) = w^T \phi(x) \]
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
- Extend x...

\[f(x) = w^T (1, x, x^2) = w^T \phi(x) \]
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
- Extend x...

$$f(x) = w^T (1, x, x^2) = w^T \phi(x)$$
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx, \hat{y}(x) = \text{sign}(f(x))$
- Extend x...

$$f(x) = w^T (1, x, x^2) = w^T \phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx, \hat{y}(x) = \text{sign}(f(x))$
- Extend x...

$$f(x) = w^T(1, x, x^2) = w^T\phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, ...
Motivation

- Machine learning! ...but how do we actually do it?
- Linear models! $f(x) = w_0 + wx$, $\hat{y}(x) = \text{sign}(f(x))$
- Extend x...

$$f(x) = w^T (1, x, x^2) = w^T \phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, ...
- ϕ will live in a reproducing kernel Hilbert space
Hilbert spaces

• A complete (real or complex) inner product space.
Hilbert spaces

- A complete (real or complex) inner product space.
Hilbert spaces

- A complete (real or complex) inner product space.
- Inner product space: a vector space with an inner product:
 \[\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}} \]
 \[\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}} \]
 \[\langle f, f \rangle_{\mathcal{H}} > 0 \text{ for } f \neq 0, \langle 0, 0 \rangle_{\mathcal{H}} = 0 \]
Hilbert spaces

- A complete (real or complex) inner product space.

- Inner product space: a vector space with an inner product:
 - \(\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_\mathcal{H} = \alpha_1 \langle f_1, g \rangle_\mathcal{H} + \alpha_2 \langle f_2, g \rangle_\mathcal{H} \)
 - \(\langle f, g \rangle_\mathcal{H} = \langle g, f \rangle_\mathcal{H} \)
 - \(\langle f, f \rangle_\mathcal{H} > 0 \) for \(f \neq 0 \), \(\langle 0, 0 \rangle_\mathcal{H} = 0 \)

Induces a norm: \(\| f \|_\mathcal{H} = \sqrt{\langle f, f \rangle_\mathcal{H}} \)
Hilbert spaces

- A complete (real or complex) inner product space.
- Inner product space: a vector space with an **inner product**:
 - $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_\mathcal{H} = \alpha_1 \langle f_1, g \rangle_\mathcal{H} + \alpha_2 \langle f_2, g \rangle_\mathcal{H}$
 - $\langle f, g \rangle_\mathcal{H} = \langle g, f \rangle_\mathcal{H}$
 - $\langle f, f \rangle_\mathcal{H} > 0$ for $f \neq 0$, $\langle 0, 0 \rangle_\mathcal{H} = 0$

Induces a **norm**: $\| f \|_\mathcal{H} = \sqrt{\langle f, f \rangle_\mathcal{H}}$

- Complete: “well-behaved” (Cauchy sequences have limits in \mathcal{H})
Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
 - \mathbb{R}^d, functions, distributions of graphs of images, ...
Kernel: an inner product between feature maps

- Call our domain \(\mathcal{X} \), some set
 - \(\mathbb{R}^d \), functions, distributions of graphs of images, ...
- \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) is a kernel on \(\mathcal{X} \) if there exists a Hilbert space \(\mathcal{H} \) and a feature map \(\phi : \mathcal{X} \to \mathcal{H} \) so that

 \[k(x, y) = \langle \phi(x), \phi(y) \rangle_\mathcal{H} \]
Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
 - \mathbb{R}^d, functions, distributions of graphs of images, ...

- $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a feature map $\phi : \mathcal{X} \rightarrow \mathcal{H}$ so that

 $$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

- Roughly, k is a notion of “similarity” between inputs
Kernel: an inner product between feature maps

- Call our domain \mathcal{X}, some set
 - \mathbb{R}^d, functions, distributions of graphs of images, ...

- $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a feature map $\phi : \mathcal{X} \rightarrow \mathcal{H}$ so that

 $$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

- Roughly, k is a notion of "similarity" between inputs

- Linear kernel on \mathbb{R}^d: $k(x, y) = \langle x, y \rangle_{\mathbb{R}^d}$
Aside: the name “kernel”

• Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

- Semi-related: kernel density estimation
 - $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, usually symmetric, like RKHS kernel
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

- Semi-related: kernel density estimation
 - $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x, y) dy = 1$, unlike RKHS kernel
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
 - $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x, y) dy = 1$, unlike RKHS kernel
 - Often requires $k(x, y) \geq 0$, unlike RKHS kernel
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

- Semi-related: kernel density estimation
 - $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, usually symmetric, like RKHS kernel
 - Always requires $\int k(x, y) \, dy = 1$, unlike RKHS kernel
 - Often requires $k(x, y) \geq 0$, unlike RKHS kernel
 - Not required to be inner product, unlike RKHS kernel
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels
Aside: the name “kernel”

- Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"
- Semi-related: kernel density estimation
- Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels
 - The Linux kernel
Aside: the name “kernel”

• Our concept: "positive semi-definite kernel," "Mercer kernel," "RKHS kernel"

• Semi-related: kernel density estimation

• Unrelated:
 - The kernel (null space) of a linear map
 - The kernel of a probability density
 - The kernel of a convolution
 - CUDA kernels
 - The Linux kernel
 - Popcorn kernels
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_\gamma(x, y) = \gamma k(x, y)$ is a kernel
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_\gamma(x, y) = \gamma k(x, y)$ is a kernel
 - $k_\gamma(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_\mathcal{H} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_\mathcal{H}$
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_{\gamma}(x, y) = \gamma k(x, y)$ is a kernel
 - $k_{\gamma}(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}}$

- Sum: $k_+(x, y) = k_1(x, y) + k_2(x, y)$ is a kernel
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_\gamma(x, y) = \gamma k(x, y)$ is a kernel
 \[k_\gamma(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_{\mathcal{H}} \]

- Sum: $k_+(x, y) = k_1(x, y) + k_2(x, y)$ is a kernel
 \[k_+(x, y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2} \]
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_\gamma(x, y) = \gamma k(x, y)$ is a kernel
 - $k_\gamma(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_\mathcal{H} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_\mathcal{H}$

- Sum: $k_+(x, y) = k_1(x, y) + k_2(x, y)$ is a kernel
 - $k_+(x, y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$

- Is $k_1(x, y) - k_2(x, y)$ necessarily a kernel?
Building kernels from other kernels

- Scaling: if $\gamma \geq 0$, $k_\gamma(x, y) = \gamma k(x, y)$ is a kernel
 - $k_\gamma(x, y) = \gamma \langle \phi(x), \phi(y) \rangle_H = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y) \rangle_H$

- Sum: $k_+(x, y) = k_1(x, y) + k_2(x, y)$ is a kernel
 - $k_+(x, y) = \left\langle \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}, \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} \right\rangle_{H_1 \oplus H_2}$

- Is $k_1(x, y) - k_2(x, y)$ necessarily a kernel?
 - Take $k_1(x, y) = 0$, $k_2(x, y) = xy$, $x \neq 0$.
 - Then $k_1(x, x) - k_2(x, x) = -x^2 < 0$
 - But $k(x, x) = \|\phi(x)\|_H^2 \geq 0$.
A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
$$
Positive definiteness

- A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0$

- Equivalently: kernel matrix K is PSD

 $K := \begin{bmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\
 k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n)
 \end{bmatrix}$
Positive definiteness

- A symmetric function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) (i.e. have \(k(x, y) = k(y, x) \)) is positive semi-definite (psd) if for all \(n \geq 1 \), \((a_1, \ldots, a_n) \in \mathbb{R}^n \), \((x_1, \ldots, x_n) \in \mathcal{X}^n \),

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
\]

- Hilbert space kernels are psd
Positive definiteness

- A symmetric function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) (i.e. have \(k(x, y) = k(y, x) \)) is positive semi-definite (psd) if for all \(n \geq 1 \), \((a_1, \ldots, a_n) \in \mathbb{R}^n, (x_1, \ldots, x_n) \in \mathcal{X}^n\),

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
\]

- Hilbert space kernels are psd

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle \mathcal{H}
\]
Positive definiteness

- A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
$$

- Hilbert space kernels are psd

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle_\mathcal{H} = \left\langle \sum_{i=1}^{n} a_i \phi(x_i), \sum_{j=1}^{n} a_j \phi(x_j) \right\rangle_\mathcal{H}
$$
Positive definiteness

- A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
$$

- Hilbert space kernels are psd

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle_{\mathcal{H}} = \left\langle \sum_{i=1}^{n} a_i \phi(x_i), \sum_{j=1}^{n} a_j \phi(x_j) \right\rangle_{\mathcal{H}}
= \left\| \sum_{i=1}^{n} a_i \phi(x_i) \right\|_{\mathcal{H}}^2
$$
Positive definiteness

- A symmetric function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) (i.e. have \(k(x, y) = k(y, x) \)) is positive semi-definite (psd) if for all \(n \geq 1 \), \((a_1, \ldots, a_n) \in \mathbb{R}^n \), \((x_1, \ldots, x_n) \in \mathcal{X}^n \),

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0
\]

- Hilbert space kernels are psd

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle_{\mathcal{H}} = \left\langle \sum_{i=1}^{n} a_i \phi(x_i), \sum_{j=1}^{n} a_j \phi(x_j) \right\rangle_{\mathcal{H}} = \left\| \sum_{i=1}^{n} a_i \phi(x_i) \right\|_{\mathcal{H}}^2 \geq 0
\]
Positive definiteness

- A symmetric function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0$$

- Hilbert space kernels are psd
Positive definiteness

- A symmetric function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ (i.e. have $k(x, y) = k(y, x)$) is positive semi-definite (psd) if for all $n \geq 1$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \geq 0$$

- Hilbert space kernels are psd

- psd functions are Hilbert space kernels
 - Moore-Aronszajn Theorem; we'll come back to this
Some more ways to build kernels

• Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd

\[
\lim_{m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k_m(x_i, x_j) \geq 0
\]
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
Some more ways to build kernels

- Limits: if $k_\infty (x, y) = \lim_{m \to \infty} k_m (x, y)$ exists, k_∞ is psd
- Products: $k_\times (x, y) = k_1 (x, y) k_2 (x, y)$ is psd
Some more ways to build kernels

- Limits: if $k_{\infty}(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_{∞} is psd

- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
 - Let $V \sim \mathcal{N}(0, K_1), W \sim \mathcal{N}(0, K_2)$ be independent
 - $\text{Cov}(V_i W_i, V_j W_j) = \text{Cov}(V_i, V_j) \text{Cov}(W_i, W_j) = k_\times(x_i, x_j)$
 - Covariance matrices are psd, so k_\times is too
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd

- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd

- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)

\[x^T y \]
Some more ways to build kernels

- Limits: if \(k_{\infty}(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_{\infty} \) is psd
- Products: \(k_{\times}(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_{n}(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)

\[x^T y + c \]
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)

\((x^Ty + c)^n\)
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_x(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$

$(x^T y + c)^n$, the polynomial kernel
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp}(x, y) = \exp(k(x, y))$ is pd
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
- Exponents: $k_{\text{exp}}(x, y) = \exp(k(x, y))$ is pd
 - $k_{\text{exp}}(x, y) = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!} k(x, y)^n$
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- Exponents: \(k_{\exp}(x, y) = \exp(k(x, y)) \) is pd
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- Exponents: \(k_{\text{exp}}(x, y) = \exp(k(x, y)) \) is pd
- If \(f : \mathcal{X} \to \mathbb{R}, k_f(x, y) = f(x)k(x, y)f(y) \) is pd
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- Exponents: \(k_{\exp}(x, y) = \exp(k(x, y)) \) is pd
- If \(f : \mathcal{X} \to \mathbb{R}, k_f(x, y) = f(x)k(x, y)f(y) \) is pd
 - Use the feature map \(x \mapsto f(x)\phi(x) \)
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
- Exponents: $k_{\exp}(x, y) = \exp(k(x, y))$ is pd
- If $f: \mathcal{X} \to \mathbb{R}$, $k_f(x, y) = f(x)k(x, y)f(y)$ is pd
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
- Exponents: $k_{\text{exp}}(x, y) = \exp(k(x, y))$ is pd
- If $f : \mathcal{X} \to \mathbb{R}$, $k_f(x, y) = f(x)k(x, y)f(y)$ is pd
Some more ways to build kernels

- Limits: if $k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y)$ exists, k_∞ is psd
- Products: $k_\times(x, y) = k_1(x, y)k_2(x, y)$ is psd
- Powers: $k_n(x, y) = k(x, y)^n$ is pd for any integer $n \geq 0$
- Exponents: $k_{\text{exp}}(x, y) = \exp(k(x, y))$ is pd
- If $f : \mathcal{X} \to \mathbb{R}$, $k_f(x, y) = f(x)k(x, y)f(y)$ is pd

\[\frac{1}{\sigma^2} x^\top y \]
Some more ways to build kernels

- **Limits:** if \(k_\infty (x, y) = \lim_{m \to \infty} k_m (x, y) \) exists, \(k_\infty \) is psd
- **Products:** \(k \times (x, y) = k_1 (x, y) k_2 (x, y) \) is psd
- **Powers:** \(k_n (x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- **Exponents:** \(k_{\exp} (x, y) = \exp(k(x, y)) \) is pd
- **If** \(f : \mathcal{X} \to \mathbb{R}, k_f (x, y) = f(x) k(x, y) f(y) \) is pd

\[
\exp \left(\frac{1}{\sigma^2} x^\top y \right)
\]
Some more ways to build kernels

- Limits: if \(k_\infty (x, y) = \lim_{m \to \infty} k_m (x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times (x, y) = k_1 (x, y) k_2 (x, y) \) is psd
- Powers: \(k_n (x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- Exponents: \(k_{\exp} (x, y) = \exp(k(x, y)) \) is pd
- If \(f : \mathcal{X} \to \mathbb{R} \), \(k_f (x, y) = f(x) k(x, y) f(y) \) is pd

\[
\exp \left(- \frac{1}{2\sigma^2} \| x \|^2 \right) \exp \left(\frac{1}{\sigma^2} x^\top y \right) \exp \left(- \frac{1}{2\sigma^2} \| y \|^2 \right)
\]
Some more ways to build kernels

- Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd
- Products: \(k_\times(x, y) = k_1(x, y)k_2(x, y) \) is psd
- Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)
- Exponents: \(k_{\text{exp}}(x, y) = \exp(k(x, y)) \) is pd
- If \(f : \mathcal{X} \to \mathbb{R} \), \(k_f(x, y) = f(x)k(x, y)f(y) \) is pd

\[
\exp \left(-\frac{1}{2\sigma^2} \|x\|^2 \right) \exp \left(\frac{1}{\sigma^2} x^T y \right) \exp \left(-\frac{1}{2\sigma^2} \|y\|^2 \right)
\]

\[
= \exp \left(-\frac{1}{2\sigma^2} \left[\|x\|^2 - 2x^T y + \|y\|^2 \right] \right)
\]
Some more ways to build kernels

• Limits: if \(k_\infty(x, y) = \lim_{m \to \infty} k_m(x, y) \) exists, \(k_\infty \) is psd

• Products: \(k \times (x, y) = k_1(x, y) k_2(x, y) \) is psd

• Powers: \(k_n(x, y) = k(x, y)^n \) is pd for any integer \(n \geq 0 \)

• Exponents: \(k_{\exp}(x, y) = \exp(k(x, y)) \) is pd

• If \(f : \mathcal{X} \to \mathbb{R}, k_f(x, y) = f(x) k(x, y) f(y) \) is pd

\[
\begin{align*}
\exp \left(-\frac{1}{2\sigma^2} \|x\|^2 \right) \exp \left(\frac{1}{\sigma^2} x^\top y \right) \exp \left(-\frac{1}{2\sigma^2} \|y\|^2 \right) \\
= \exp \left(-\frac{\|x-y\|^2}{2\sigma^2} \right), \text{ the Gaussian kernel}
\end{align*}
\]
Reproducing property

- Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]
Reproducing property

- Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]
Reproducing property

• Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]

• Kernel is \(k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = 1 + xy + x^2 y^2 \)
Reproducing property

- Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]

- Kernel is \(k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = 1 + xy + x^2 y^2 \)

- Classifier based on linear \(f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}} \)
Reproducing property

- Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]

- Kernel is \(k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = 1 + xy + x^2 y^2 \)

- Classifier based on linear \(f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}} \)

- \(f(\cdot) \) is the function \(f \) itself; corresponds to vector \(w \) in \(\mathbb{R}^3 \)

\(f(x) \in \mathbb{R} \) is the function evaluated at a point \(x \)
Reproducing property

- Recall original motivating example with

\[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]

- Kernel is \(k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = 1 + xy + x^2y^2 \)

- Classifier based on linear \(f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}} \)

- \(f(\cdot) \) is the function \(f \) itself; corresponds to vector \(w \) in \(\mathbb{R}^3 \)
 - \(f(x) \in \mathbb{R} \) is the function evaluated at a point \(x \)

- Elements of \(\mathcal{H} \) are functions, \(f : \mathcal{X} \to \mathbb{R} \)
Reproducing property

- Recall original motivating example with
 \[\mathcal{X} = \mathbb{R} \quad \phi(x) = (1, x, x^2) \in \mathbb{R}^3 \]

- Kernel is \(k(x, y) = \langle \phi(x), \phi(y) \rangle_\mathcal{H} = 1 + xy + x^2 y^2 \)

- Classifier based on linear \(f(x) = \langle w, \phi(x) \rangle_\mathcal{H} \)

- \(f(\cdot) \) is the function \(f \) itself; corresponds to vector \(w \) in \(\mathbb{R}^3 \)
 \(f(x) \in \mathbb{R} \) is the function evaluated at a point \(x \)

- Elements of \(\mathcal{H} \) are functions, \(f : \mathcal{X} \rightarrow \mathbb{R} \)

- Reproducing prop.: \(f(x) = \langle f(\cdot), \phi(x) \rangle_\mathcal{H} \) for \(f \in \mathcal{H} \)
Reproducing kernel Hilbert space (RKHS)

- Every psd kernel \(k \) on \(\mathcal{X} \) defines a (unique) Hilbert space, its RKHS \(\mathcal{H} \), and a map \(\phi : \mathcal{X} \rightarrow \mathcal{H} \) where

 \[k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}} \]

- Elements \(f \in \mathcal{H} \) are functions on \(\mathcal{X} \), with

 \[f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} \]

- Combining the two, we sometimes write \(k(x, \cdot) = \phi(x) \)
Reproducing kernel Hilbert space (RKHS)

- Every psd kernel k on \mathcal{X} defines a (unique) Hilbert space, its RKHS \mathcal{H}, and a map $\phi : \mathcal{X} \rightarrow \mathcal{H}$ where
 - $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$
 - Elements $f \in \mathcal{H}$ are functions on \mathcal{X}, with $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$

- Combining the two, we sometimes write $k(x, \cdot) = \phi(x)$

- $k(x, \cdot)$ is the **evaluation functional**
 An RKHS is defined by it being continuous, or

$$|f(x)| \leq M_x \|f\|_{\mathcal{H}}$$
Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \text{span} \{ k(x, \cdot) : x \in \mathcal{X} \}$
Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \text{span}(\{k(x, \cdot) : x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot) \rangle_{\mathcal{H}_0} = k(x, y)$
Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \text{span}(\{k(x, \cdot) : x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot) \rangle_{\mathcal{H}_0} = k(x, y)$
 - Take \mathcal{H} to be completion of \mathcal{H}_0 in the metric from $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$
Moore-Aronszajn Theorem

• Building \mathcal{H} for a given psd k:
 ■ Start with $\mathcal{H}_0 = \text{span}(\{k(x, \cdot) : x \in X\})$
 ■ Define $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot) \rangle_{\mathcal{H}_0} = k(x, y)$
 ■ Take \mathcal{H} to be completion of \mathcal{H}_0 in the metric from $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$
 ■ Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}
Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \text{span}(\{k(x, \cdot) : x \in \mathcal{X}\})$
 - Define $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot) \rangle_{\mathcal{H}_0} = k(x, y)$
 - Take \mathcal{H} to be completion of \mathcal{H}_0 in the metric from $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$
 - Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}
 - Can also show uniqueness
Moore-Aronszajn Theorem

- Building \mathcal{H} for a given psd k:
 - Start with $\mathcal{H}_0 = \text{span}(\{k(x, \cdot) : x \in X\})$
 - Define $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ from $\langle k(x, \cdot), k(y, \cdot) \rangle_{\mathcal{H}_0} = k(x, y)$
 - Take \mathcal{H} to be completion of \mathcal{H}_0 in the metric from $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$
 - Get that the reproducing property holds for $k(x, \cdot)$ in \mathcal{H}
 - Can also show uniqueness

- Theorem: k is psd iff it's the reproducing kernel of an RKHS
A quick check: linear kernels

- \(k(x, y) = x^\mathsf{T} y \) on \(\mathcal{X} = \mathbb{R}^d \)
 - \(k(x, \cdot) = \left[y \mapsto x^\mathsf{T} y \right] \) "corresponds to" \(x \)

- If \(f(y) = \sum_{i=1}^{n} a_i k(x_i, y) \), then \(f(y) = \left[\sum_{i=1}^{n} a_i x_i \right]^\mathsf{T} y \)

- Closure doesn't add anything here, since \(\mathbb{R}^d \) is closed
- So, linear kernel gives you RKHS of linear functions

- \(\| f \|_H = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j)} = \| \sum_{i=1}^{n} a_i x_i \| \)
More complicated: Gaussian kernels

$$k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right)$$

- \(\mathcal{H}\) is infinite-dimensional
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

• \(\mathcal{H} \) is infinite-dimensional
More complicated: Gaussian kernels

\[k(x, y) = \exp \left(\frac{1}{2\sigma^2} \|x - y\|^2 \right) \]

- \(\mathcal{H} \) is infinite-dimensional
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

- \(\mathcal{H} \) is infinite-dimensional
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

- \(\mathcal{H} \) is infinite-dimensional
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

- \(\mathcal{H} \) is infinite-dimensional
- Functions in \(\mathcal{H} \) are bounded:
 \[f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}} = \|f\|_{\mathcal{H}} \]
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

- \(\mathcal{H}\) is infinite-dimensional
- Functions in \(\mathcal{H}\) are bounded:
 \[f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}} = \|f\|_{\mathcal{H}} \]
- Choice of \(\sigma\) controls how fast functions can vary:
 \[
 f(x + t) - f(x) \leq \|k(x + t, \cdot) - k(x', \cdot)\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \\
 \|k(x + t, \cdot) - k(x, \cdot)\|_{\mathcal{H}}^2 = 2 - 2k(x, x + t) = 2 - 2 \exp\left(-\frac{\|t\|^2}{2\sigma^2}\right)
 \]
More complicated: Gaussian kernels

\[k(x, y) = \exp\left(\frac{1}{2\sigma^2} \|x - y\|^2\right) \]

- \(\mathcal{H} \) is infinite-dimensional
- Functions in \(\mathcal{H} \) are bounded:
 \[f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \leq \sqrt{k(x, x)} \| f \|_{\mathcal{H}} = \| f \|_{\mathcal{H}} \]
- Choice of \(\sigma \) controls how fast functions can vary:
 \[f(x + t) - f(x) \leq \| k(x + t, \cdot) - k(x', \cdot) \|_{\mathcal{H}} \| f \|_{\mathcal{H}} \]
 \[\| k(x + t, \cdot) - k(x, \cdot) \|^2_{\mathcal{H}} = 2 - 2k(x, x + t) = 2 - 2 \exp\left(-\frac{\|t\|^2}{2\sigma^2}\right) \]
- Can say lots more with Fourier properties
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|^2_{\mathcal{H}} \]

Linear kernel gives normal ridge regression:

\[\hat{f}(x) = \hat{w}^T x; \quad \hat{w} = \arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \| w \|^2 \]

Nonlinear kernels will give nonlinear regression!
Kernel ridge regression

\[\hat{f} = \underset{f \in \mathcal{H}}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|^2_{\mathcal{H}} \]

How to find \(\hat{f} \)?
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? Representer Theorem
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem**

- Let \(\mathcal{H}_X = \text{span}\{k(x_i, \cdot)\}_{i=1}^{n} \)
 \(\mathcal{H}_\perp \) its orthogonal complement in \(\mathcal{H} \)
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem**

- Let \(\mathcal{H}_X = \text{span}\{ k(x_i, \cdot) \}_{i=1}^{n} \)
 - \(\mathcal{H}_\perp \) its orthogonal complement in \(\mathcal{H} \)
- Decompose \(f = f_X + f_\perp \) with \(f_X \in \mathcal{H}_X, f_\perp \in \mathcal{H}_\perp \)
Kernel ridge regression

\[
\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|^2_{\mathcal{H}}
\]

How to find \(\hat{f} \)? Representer Theorem

- Let \(\mathcal{H}_X = \text{span}\{k(x_i, \cdot)\}_{i=1}^{n} \)
 \(\mathcal{H}_{\perp} \) its orthogonal complement in \(\mathcal{H} \)

- Decompose \(f = f_X + f_{\perp} \) with \(f_X \in \mathcal{H}_X, f_{\perp} \in \mathcal{H}_{\perp} \)

- \(f(x_i) = \langle f_X + f_{\perp}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}} \)
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem**

- Let \(\mathcal{H}_X = \text{span}\{k(x_i, \cdot)\}_{i=1}^{n} \)

 \(\mathcal{H}_\perp \) its orthogonal complement in \(\mathcal{H} \)

- Decompose \(f = f_X + f_\perp \) with \(f_X \in \mathcal{H}_X, f_\perp \in \mathcal{H}_\perp \)

- \(f(x_i) = \langle f_X + f_\perp, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}} \)

- \(\| f \|_{\mathcal{H}}^2 = \| f_X \|_{\mathcal{H}}^2 + \| f_\perp \|_{\mathcal{H}}^2 \)
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2 \]

How to find \(\hat{f} \)? **Representer Theorem**

- Let \(\mathcal{H}_X = \text{span}\{k(x_i, \cdot)\}_{i=1}^{n} \)
 \(\mathcal{H}_{\perp} \) its orthogonal complement in \(\mathcal{H} \)
- Decompose \(f = f_X + f_\perp \) with \(f_X \in \mathcal{H}_X, f_\perp \in \mathcal{H}_{\perp} \)
- \(f(x_i) = \langle f_X + f_\perp, k(x_i, \cdot) \rangle_\mathcal{H} = \langle f_X, k(x_i, \cdot) \rangle_\mathcal{H} \)
- \(\|f\|_\mathcal{H}^2 = \|f_X\|_\mathcal{H}^2 + \|f_\perp\|_\mathcal{H}^2 \)
- Minimizer needs \(f_\perp = 0 \), and so \(\hat{f} = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \)
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]
Kernel ridge regression

\[\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(x_i, x_j) - y_i \right)^2 = \sum_{i=1}^{n} ([K\alpha]_i - y_i)^2 \]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(x_i, x_j) - y_i \right)^2 = \sum_{i=1}^{n} (K\alpha)_i - y_i \right)^2 = \| K\alpha - y \|_2^2
\]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(x_i, x_j) - y_i \right)^2 = \sum_{i=1}^{n} ([K\alpha]_i - y_i)^2 = \|K\alpha - y\|^2
\]

\[= \alpha^T K^2 \alpha - 2y^T K\alpha + y^T y \]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(x_i, x_j) - y_i \right)^2 = \sum_{i=1}^{n} ([K\alpha]_i - y_i)^2 = \| K\alpha - y \|_2^2
\]

\[= \alpha^T K^2 \alpha - 2y^T K\alpha + y^T y \]

\[
\left\| \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \right\|_{\mathcal{H}}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i k(x_i, x_j) \alpha_j
\]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f}\)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(x_i, x_j) - y_i \right)^2 = \sum_{i=1}^{n} ([K\alpha]_i - y_i)^2 = \| K\alpha - y \|^2 \]

\[= \alpha^T K^2 \alpha - 2y^T K\alpha + y^T y \]

\[\left\| \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \right\|_{\mathcal{H}}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i k(x_i, x_j)\alpha_j = \alpha^T K\alpha \]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[\hat{\alpha} = \arg \min_{\alpha \in \mathbb{R}^n} \alpha^T K^2 \alpha - 2y^T K \alpha + y^T y + n\lambda \alpha^T K \alpha \]
Kernel ridge regression

\[\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|_{\mathcal{H}}^2 \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[\hat{\alpha} = \arg\min_{\alpha \in \mathbb{R}^n} \alpha^T K^2 \alpha - 2y^T K \alpha + y^T y + n\lambda \alpha^T K \alpha \]

\[= \arg\min_{\alpha \in \mathbb{R}^n} \alpha^T K(K + n\lambda I)\alpha - 2y^T K \alpha \]
Kernel ridge regression

\[\hat{f} = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \| f \|^2_{\mathcal{H}} \]

How to find \(\hat{f} \)? **Representer Theorem:**

\[\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot) \]

\[\hat{\alpha} = \arg \min_{\alpha \in \mathbb{R}^n} \alpha^T K^2 \alpha - 2 y^T K \alpha + y^T y + n \lambda \alpha^T K \alpha \]

\[= \arg \min_{\alpha \in \mathbb{R}^n} \alpha^T K (K + n \lambda I) \alpha - 2 y^T K \alpha \]

Setting derivative to zero gives \(K (K + n \lambda I) \hat{\alpha} = Ky \), satisfied by \(\hat{\alpha} = (K + n \lambda I)^{-1} y \)
Other kernel algorithms

- Representer theorem applies if R is strictly increasing in
 \[
 \min_{f \in \mathcal{H}} L(f(x_1), \ldots, f(x_n)) + R(\|f\|_{\mathcal{H}})
 \]

- Kernel methods can then train based on kernel matrix K

- Classification algorithms:
 - Support vector machines: L is hinge loss
 - Kernel logistic regression: L is logistic loss

- Principal component analysis, canonical correlation analysis

- Many, many more...

- But *not everything* works...e.g. Lasso $\|w\|_1$ regularizer
Some theory: generalization

- Rademacher complexity of $\{f \in \mathcal{H} : \|f\|_\mathcal{H} \leq B\}$ is upper-bounded by B/\sqrt{n} if $k(x, x) \leq 1$
Some theory: generalization

- Rademacher complexity of \(\{ f \in \mathcal{H} : \| f \|_{\mathcal{H}} \leq B \} \) is upper-bounded by \(\frac{B}{\sqrt{n}} \) if \(k(x, x) \leq 1 \)

- Implies for \(L \)-Lipschitz losses \(\ell(\cdot, y) \) that

\[
\sup_{f : \| f \|_{\mathcal{H}} \leq B} \mathbb{E}[\ell(f(x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \leq \frac{2LB}{\sqrt{n}}
\]
Some theory: generalization

- Rademacher complexity of \(\{ f \in \mathcal{H} : \| f \|_{\mathcal{H}} \leq B \} \) is upper-bounded by \(B / \sqrt{n} \) if \(k(x, x) \leq 1 \)

- Implies for \(L \)-Lipschitz losses \(\ell(\cdot, y) \) that

\[
\sup_{f : \| f \|_{\mathcal{H}} \leq B} \mathbb{E}[\ell(f(x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \leq \frac{2LB}{\sqrt{n}}
\]

- Same kind of rates with stability-based analyses
Some theory: generalization

- Rademacher complexity of \(\{ f \in \mathcal{H} : \| f \|_{\mathcal{H}} \leq B \} \) is upper-bounded by \(B/\sqrt{n} \) if \(k(x, x) \leq 1 \)

- Implies for \(L \)-Lipschitz losses \(\ell(\cdot, y) \) that

\[
\sup_{f: \|f\|_{\mathcal{H}} \leq B} \mathbb{E}[\ell(f(x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \leq \frac{2LB}{\sqrt{n}}
\]

- Same kind of rates with stability-based analyses

- Implies that, if the “truth” is low-norm, most kernel methods are \(\tilde{O}(1/\sqrt{n}) \) suboptimal
Some theory: generalization

- Rademacher complexity of \(\{ f \in \mathcal{H} : \| f \|_\mathcal{H} \leq B \} \) is upper-bounded by \(B/\sqrt{n} \) if \(k(x, x) \leq 1 \)

- Implies for \(L \)-Lipschitz losses \(\ell(\cdot, y) \) that

\[
\sup_{f : \| f \|_\mathcal{H} \leq B} \mathbb{E}[\ell(f(x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \leq \frac{2LB}{\sqrt{n}}
\]

- Same kind of rates with stability-based analyses

- Implies that, if the “truth” is low-norm, most kernel methods are \(\tilde{O}(1/\sqrt{n}) \) suboptimal

- Difficulty of learning is controlled by RKHS norm of target
Some theory: universality

- One definition: a continuous kernel on a compact metric space \mathcal{X} is **universal** if \mathcal{H} is L_∞-dense in $C(\mathcal{X})$:
 - for every continuous $g : \mathcal{X} \to \mathbb{R}$, for every $\varepsilon > 0$, there is an $f \in \mathcal{H}$ with $\|f - g\|_\infty = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$
Some theory: universality

- One definition: a continuous kernel on a compact metric space \mathcal{X} is universal if \mathcal{H} is L_∞-dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, for every $\varepsilon > 0$, there is an $f \in \mathcal{H}$ with $\|f - g\|_\infty = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

- Implies that, on compact \mathcal{X}, \mathcal{H} can separate compact sets
 - $\exists f \in \mathcal{H}$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$
 - Which implies there are $f \in \mathcal{H}$ with arbitrarily small loss
 - Might take arbitrarily large norm: approximation/estimation tradeoff
Some theory: universality

- One definition: a continuous kernel on a compact metric space \mathcal{X} is **universal** if \mathcal{H} is L_∞-dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, for every $\varepsilon > 0$, there is an $f \in \mathcal{H}$ with $\|f - g\|_\infty = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

- Implies that, on compact \mathcal{X}, \mathcal{H} can separate compact sets
 - $\exists f \in \mathcal{H}$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$
 - Which implies there are $f \in \mathcal{H}$ with arbitrarily small loss
 - Might take **arbitrarily large** norm: approximation/estimation tradeoff

- Can prove via Stone-Weierstrass or Fourier properties
Some theory: universality

- One definition: a continuous kernel on a compact metric space \mathcal{X} is universal if \mathcal{H} is L_∞-dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, for every $\varepsilon > 0$, there is an $f \in \mathcal{H}$ with $\|f - g\|_\infty = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

- Implies that, on compact \mathcal{X}, \mathcal{H} can separate compact sets
 - $\exists f \in \mathcal{H}$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$
 - Which implies there are $f \in \mathcal{H}$ with arbitrarily small loss
 - Might take arbitrarily large norm: approximation/estimation tradeoff

- Can prove via Stone-Weierstrass or Fourier properties

- Never true for finite-dim kernels: need $\text{rank}(K) = n$
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and \textit{translation invariant}
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)

- If $\psi \in L_1$, the measure has a density
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)

- If $\psi \in L_1$, the measure has a density

- If that density is positive everywhere, k is universal
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)

- If $\psi \in L_1$, the measure has a density

- If that density is positive everywhere, k is universal

- For all nonzero finite signed measures μ,
 $\int \int k(x, y) \, d\mu(x) \, d\mu(y) > 0$
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)

- If $\psi \in L_1$, the measure has a density

- If that density is positive everywhere, k is universal

- For all nonzero finite signed measures μ,
 $$\int \int k(x, y) \, d\mu(x) \, d\mu(y) > 0$$

- True for Gaussian $\exp\left(-\frac{1}{2\sigma^2} \|x - y\|^2\right)$
Translation-invariant kernels on \mathbb{R}^d

- Assume k is bounded, continuous, and translation invariant
 - $k(x, y) = \psi(x - y)$

- Then ψ is proportional to the Fourier transform of a probability measure (Bochner's theorem)

- If $\psi \in L_1$, the measure has a density

- If that density is positive everywhere, k is universal

- For all nonzero finite signed measures μ,
 $$\int_{\mathcal{X}} \int_{\mathcal{X}} k(x, y) \, d\mu(x) \, d\mu(y) > 0$$

- True for Gaussian $\exp(-\frac{1}{2\sigma^2} \|x - y\|^2)$

- and Laplace $\exp(-\frac{1}{\sigma} \|x - y\|)$
Limitations of kernel-based learning

- Generally bad at learning \textit{sparsity}
 - e.g. $f(x_1, \ldots, x_d) = 3x_2 - 5x_{17}$ for large d
Limitations of kernel-based learning

- Generally bad at learning sparsity
 - e.g. $f(x_1, \ldots, x_d) = 3x_2 - 5x_{17}$ for large d

- Provably statistically slower than deep learning for a few problems
 - e.g. to learn a single ReLU, $\max(0, w^T x)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
 - Also some hierarchical problems, etc [Kamath+ COLT-20]
Limitations of kernel-based learning

- Generally bad at learning sparsity
 - e.g. $f(x_1, \ldots, x_d) = 3x_2 - 5x_{17}$ for large d

- Provably statistically slower than deep learning for a few problems
 - e.g. to learn a single ReLU, $\max(0, w^T x)$, need norm exponential in d [Yehudai/Shamir NeurIPS-19]
 - Also some hierarchical problems, etc [Kamath+ COLT-20]

- $O(n^3)$ computational complexity, $O(n^2)$ memory
 - Various approximations you can make
Relationship to deep learning

- Deep models usually end as $f_L(x) = w_L^T f_{L-1}(x)$
Relationship to deep learning

- Deep models usually end as $f_L(x) = \omega_L^T f_{L-1}(x)$
- Can think of as learned kernel, $k(x, y) = f_{L-1}(x) f_{L-1}(y)$
Relationship to deep learning

- Deep models usually end as $f_L(x) = w_L^T f_{L-1}(x)$
- Can think of as learned kernel, $k(x, y) = f_{L-1}(x) f_{L-1}(y)$
- Does this gain us anything?
Relationship to deep learning

- Deep models usually end as $f_L(x) = w_L^T f_{L-1}(x)$
- Can think of as learned kernel, $k(x, y) = f_{L-1}(x)f_{L-1}(y)$
- Does this gain us anything?
 - Random nets with trained last layer (NNGP) can be decent
Relationship to deep learning

- Deep models usually end as $f_L(x) = w_L^T f_{L-1}(x)$
- Can think of as learned kernel, $k(x, y) = f_{L-1}(x)f_{L-1}(y)$
- Does this gain us anything?
 - Random nets with trained last layer (NNGP) can be decent
 - As width $\to \infty$, nets become neural tangent kernel
 - Widely used theoretical analysis...more tomorrow
 - SVMs with NTK can be great on small data
Relationship to deep learning

- Deep models usually end as $f_L(x) = w_L^T f_{L-1}(x)$
- Can think of as learned kernel, $k(x, y) = f_{L-1}(x) f_{L-1}(y)$
- Does this gain us anything?
 - Random nets with trained last layer (NNGP) can be decent
 - As width $\to \infty$, nets become neural tangent kernel
 - Widely used theoretical analysis...more tomorrow
 - SVMs with NTK can be great on small data
- Inspiration: learn the kernel model end-to-end
 - Ongoing area; good results in two-sample testing, GANs, density estimation, meta-learning, semi-supervised learning, ...
 - Explored a bit in interactive session!
What's next

- After break: interactive session exploring w/ ridge regression
- Tomorrow: a subset of
 - Representing distributions
 - Uses for statistical testing + generative models
 - Connections to Gaussian processes, probabilistic numerics
 - Approximation methods for faster computation
 - Deeper connection to deep learning
- More details on basics:
 - Berlinet and Thomas-Agnan, *RKHS in Probability and Statistics*
 - Steinwart and Christmann, *Support Vector Machines*