Modern Kernel Methods
in Machine Learning:
Part |

Danica J. Sutherland (shesher)

Computer Science, University of British Columbia
ETICS "summer" school, Oct 2022

https://djsutherland.ml/

Motivation

e Machine learning!

Motivation

e Machine learning! ...but how do we actually do it?

Motivation

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Motivation

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Motivation

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

(X [N N J -q-... Gl e GO © GO oGmpeee o @0 @G o

Motivation

e Machine learning! ...but how do we actually do it?
e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend ...

f(z) = w' (1,2,2°) = w' ¢(2)

Motivation

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend ...
fz)=w'(1,z,4°) = w' ¢()
° y
“ o
% ry
® o
® [4
\~. .
N, oo’

Motivation

e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend ...
fz)=w'(1,z,2°) =w' ¢(x)
LY y
“ o
% ry
hd o
® [4
. N SR
N\, o®

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

f(z) = w' (1,2,2°) = w' ¢(2)

Kernels are basically a way to study doing this with any,
potentially very complicated, ¢

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w'(1,z,2%) = w' §(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(z) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w'(1,z,2%) = w' §(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

¢ will live in a reproducing kernel Hilbert space

Hilbert spaces

e A complete (real or complex) inner product space.

Hilbert spaces
e A complete (real erecomptex) inner product space.

Hilbert spaces

e A complete (real erecomptex) inner product space.

e Inner product space: a vector space with an inner product:
" (Oélf1 T Oézf2,g>H = a1(f1,9)n + @2 (f2, 9)n

. <f,f>a >0forf#0, (0,0)3 =0

Hilbert spaces

e A complete (real erecomptex) inner product space.

e Inner product space: a vector space with an inner product:
" (Oélf1 T Oézf2,g>H = a1(f1,9)n + a2 (f2, 9)n

. <f,f>a > OforfaéO, (0,0)% =0
Induces a norm: || |l = +/(f, f)u

Hilbert spaces
e A complete (real erecomptex) inner product space.

e Inner product space: a vector space with an inner product:
= (a1 f1 + a2 fo,9)n = a1 ({f1,9)n + a2(f2, 9)n

. <fag>'H — <gaf>7-t
= (f, f)n > 0for f#0,(0,0) =0

Induces a norm: || |l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on & if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (¢(x), o(y))n

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on & if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (¢(x), o(y))n

e Roughly, k is a notion of “similarity” between inputs

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on & if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (¢(x), o(y))n

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on R%: k(z,y) = (w,y)Rd

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation
n k: X X X — R, usually symmetric, like RKHS kernel

Aside: the name “kernel”

e QOur concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation
n k: X X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation
n k: X X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel
= Often requires k(x,y) > 0, unlike RKHS kernel

Aside: the name “kernel”

e QOur concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation
n k: X X X — R, usually symmetric, like RKHS kernel

= Always requires fk(a:, y)dy = 1, unlike RKHS kernel
= Often requires k(x,y) > 0, unlike RKHS kernel

= Not required to be inner product, unlike RKHS kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

= The kernel of a convolution

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

s The kernel of a convolution
s CUDA kernels

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

s The kernel of a convolution
s CUDA kernels

® The Linux kernel

Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

s The kernel of a convolution
s CUDA kernels
® The Linux kernel

= Popcorn kernels

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z,y) is a kernel
» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

o Sum: k4 (xay) = k1 (:c,y) + ko (a:,y) is a kernel

Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: k4 (xay) = k1 (:c,y) + ko (a:,y) is a kernel

-/ [¢i(z)] [o1(y)”
l{t_|_ (Cl?,y) — < _¢2 (aj)_ ’ _¢2 (y)- >'H169'H2

Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: k4 (xay) = k1 (:c,y) + ko (a:,y) is a kernel

-/ [¢i(z)] [o1(y)”
l{t_|_ (Cl?,y) — < _¢2 (aj)_ ’ _¢2 (y)- >'H169'H2

o Is k1 (x,y) — ka (2, y) necessarily a kernel?

Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: k4 (xay) = k1 (:c,y) + ko (a:,y) is a kernel

-/ [¢i(z)] [o1(y)”
l{t_|_ (Cl?,y) — < _¢2 (aj)_ ’ _¢2 (y)- >'H169'H2

e Iski(x,y) — ko (x,y) necessarily a kernel?
= Take k1 (x,y) =0, ko (z,y) = zy, # 0.

» Thenky (z,z) — ko(z,2) = —2% < 0
+ Butk(z,) = |42}, > 0

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln, > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for all n, > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=
e Equivalently: kernel matr/xK is PSD
k(zy,z1) k(z1,22) ... Ek(z1,7,)
k(ze,x1) k(xe,x2) ... k(zo,z,)

k(x,,x1) k(xn,x2) ... k(z,,z,)

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=
e Hilbert space kernels are psd

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi, ;) >0

1=1 j=
e Hilbert space kernels are psd

ZZ a; p(;), a;P(x;))

=1 j=

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln, > 1

(a1,...,a,) €ER", (21,...,2,) € X",
ZZazaJ :cz,:vj) >0
1=1 j=

e Hilbert space kernels are psd

Zzazwz a;p(z;) H—<Zaz¢xz Za]¢xj>

Z].] %

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for all n, > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=
e Hilbert space kernels are psd

Zzazwz a;p(z;) H—<Zaz¢xz Za]¢xj>

=1 j=
= Zaz’¢(fﬂz’)
=1

H
2

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln > 1

(a1,...,a,) € R", (21,...,2,) € X",
ZZazaJ :cz,:vj) >0
1=1 j=

e Hilbert space kernels are psd

Zzazwz a;p(z;) H—<Zaz¢xz Za]¢xj>

Z].] %

2

1=1

H

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln > 1
(a1,...,a,) € R", (21,...,2,) € X",

ZZazaJ zi, ;) >0

1=1 j=
e Hilbert space kernels are psd

Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln, > 1
(a1,...,a,) €ER", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=
e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this

Some more ways to build kernels

o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

Some more ways to build kernels

o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

Some more ways to build kernels

o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

e Products: kx (ZB, y) = ki ("Ba y)kZ (ZB, y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

e Products: ky (z,y) = ki (z,y)k2 (2, y) is psd
= LletV ~ N(0,K;7), W ~ N (0, K3) be independent
= Cov(V;W;, V;W;) = Cov(V;, V) Cov(W;, W;) = ky (x;, ;)

= Covariance matrices are psd, so ky is too

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd

e Products: kx (ZB, y) = ks ("Ba y)kZ (ZB, y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (z,y) = ki (x,y)ks (2, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (z,y) = ki (x,y)ks(x,y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integer n > 0

CL'Ty

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (z,y) = ki (x,y)ks (2, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0

a:Ty—I—c

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (z,y) = ki (x,y)ks (2, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0

(ZETy 14 c)n

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (z,y) = ki (x,y)ks (2, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0

(a:Ty + c)", the polynomial kernel

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks, is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks, is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0

Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
+ Ky (2,9) = im0 o Lh(z,)"

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks, is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki1 (z,y)ks (x,y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = f(z)k(z,y)f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd

£ X = R kg (2,) = F(@)k(z,5) f(3) 5 po
= Use the feature map = — f(x)¢(x)

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
ff: X = R kg(z,y) = f(z)k(z,y)f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = limy, o0 km (2, y) exists, ks is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
ff: X = R kf(z,y) = f(o)k(z,y)f(y) is pd

CBTy

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks, is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
ff: X =R kg(z,y) = f(2)k(z,y)f(y) is po
1 7

o2

Some more ways to build kernels
Limits: if koo (2, y) = limy,, o0 km (2, y) exists, ks, is psd
Products: kx (z,y) = ki (z,y)ks (2, y) is psd
Powers: k, (z,y) = k(x,y)"™ is pd for any integer n > 0
Exponents: Kexp (Z,y) = exp(k(z,y)) is pd
ff: X = R kf(z,y) = f(o)k(z,y)f(y) is pd

1
exp (—ZxTy)
o

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (x,y) = k1 (x, y)ks (x, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0
o Exponents: kexp (2,y) = exp(k(z,y)) is pd
o If f 1 X = R kf(z,y) = f(z)k(z,y) f(y) is pd

€X L €X —Z €X
p(— oz llel?) exp (oTy) exp (— o vl

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (x,y) = k1 (x, y)ks (x, y) is psd
e Powers: k, (x,y) = k(x,y)" is pd for any integer n > 0
o Exponents: kexp (2,y) = exp(k(z,y)) is pd
o If f 1 X = R kf(z,y) = f(z)k(z,y) f(y) is pd

€X £ €X —Z €X
p(— oz llel?) exp (oTy) exp (— o vl

1
= exp (= o [llel? — 22Ty + ly]*])

Some more ways to build kernels
o Limits: if koo (2, y) = limy, o0 km (,y) exists, ks is psd
e Products: kx (x,y) = k1 (x, y)ks (x, y) is psd
e Powers: k, (z,y) = k(x,y)" is pd for any integer n > 0
o Exponents: kexp (2,y) = exp(k(z,y)) is pd
o If f 1 X = R ky(z,y) = f(z)k(z, y) f(y) is pd

€X L €X —Z €X
p(— oz llel?) exp (oTy) exp (— o vl

2
lz—yl

202

— exp () the Gaussian kernel

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) cR’

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) cR’

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) cR’

e Kernelis k(z,y) = (¢(x), d(y))n = 1+ zy + 372?/2

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) cR’

e Kernelis k(z,y) = (¢(z), d(v))y = 1 + zy + z%y?
e Classifier based on linear f(:v) = <w7 ¢($)>H

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) cR’

e Kernelis k(z,y) = (¢(z), d(v))y = 1 + zy + z%y?
e Classifier based on linear f(a?) = <w, ¢("13)>’H

e f(-)is the function f itself; corresponds to vector w in R®
f(x) € Ris the function evaluated at a point

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) cR’
* Kernelis k(z,y) = (¢(z), ¢(y))n = 1 + 2y + z°y’

e Classifier based on linear f(a?) = <w, ¢("13)>’H

e f(-)is the function f itself; corresponds to vector w in R®
f(x) € Ris the function evaluated at a point

e Elements of H are functions, f : X - R

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) cR’

e Kernelis k(z,y) = (¢(z), d(v))y = 1 + zy + z%y?
e Classifier based on linear f(a?) = <w, ¢("13)>H

e f(-)is the function f itself; corresponds to vector w in R®
f(x) € Ris the function evaluated at a point

e Elements of H are functions, f : X — R
 Reproducing prop.: f(z) = (f(-), ¢(x))y for f € H

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Hoy = span({k(z,-) : x € X})

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Hoy = span({k(z,-) : x € X})

= Define (-,)y, from (k(z,), k(y,), = k(z,y)

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Hoy = span({k(z,-) : x € X})

= Define (-,)y, from (k(z,), k(y,), = k(z,y)

= Take H to be completion of Hy in the metric from (-, *)#,

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Hoy = span({k(z,-) : x € X})

= Define <'7 '>'H0 from <k‘(.’B, ')7 k(ya)>'H0 — k(ib, y)
= Take H to be completion of Hg in the metric from (-, '>Ho

= Get that the reproducing property holds for k(w,) in H

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Ho = span({k(z,-) : x € X})

= Define (-,)y, from (k(z,-), k(y,), = k(z,y)
= Take H to be completion of Hg in the metric from (-, '>Ho

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Ho = span({k(z,-) : x € X})

= Define (-,)y, from (k(z,-), k(y,), = k(z,y)
= Take H to be completion of Hg in the metric from (-, '>Ho

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels

k(z,y) =2 yon X = R?
» k(z,-) = [y — z"y] "corresponds to" x

Iff Zaz a:z,y then f() [Zz 1azxz]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[fllae = /300 X aiash(zi 2p) = |23 @il

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

@@%ﬁ

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional

e Functions in ’H are bounded

f(@) = (fk(z,)n < v/k(@, @) || fllae = [fllo

@@%ﬁ

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional
e Functions in ’H are bounded
f(z) = (fik(z,))u < VE(z,2)|| flln = || flln
e Choice of o controls how fast functions can vary:
flz+1t) = f(z) < ||k(z +1,-) — k(')l flloe
\k(z +1,-) — k(z,)||2, = 2 — 2k(z,z + 1) = 2 — 2exp (—ﬂ)

0'

M%A

More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional
e Functions in ’H are bounded:

f(@) = (fk(z,)s < v/k(@, @) || fllae = [fllo

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,-) — k(@',) |la]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp(I)

0'

e Can say lots more with Fourier properties

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1
Linear kernel gives normal ridge regression:

. . 1O
(z) =w'®x; @ = argmin — Z(wTazz- —;)* + Al|Jw||?
werd T 1=1

Nonlinear kernels will give nonlinear regression!

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f?

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
‘H | its orthogonal complement in H

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
‘H | its orthogonal complement in H

e Decompose f = fx + fL with fy € Hx, fL € H]

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
‘H | its orthogonal complement in H

e Decompose f = fx + fL with fy € Hx, fL € H]

o f(z:) = (fx + fr, ki,) = (Fx, k(Ti,°))n

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
‘H | its orthogonal complement in H

e Decompose f = fx + f with fx € Hx, f1L € H,
o f(zi) = (fx + fr, k(zi,-)n = (fx, k(zi,°))n
o || £115, = x5, + I fLll3

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
H | its orthogonal complement in H

e Decompose f = fx + f with fx € Hx, f1L € H,
o f(zi) = (fx + fr, k(zi,-)n = (fx, k(zi,°))n
o || £115, = x5, + I fLll3

e Minimizer needs f;, = 0, and sof = Z?:l a; k(x;,)

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

feH n i—1

How to find f? Representer Theorem: f — Z?:l a;k(z;,)

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f? Representer Theorem: f — Z?:l a;k(z;,)

ﬁ: (ﬁ: ajk(zi, o) — yz) = Z ([Ka]; — yz')2

=1 1=1

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;,)

n

> (L (@i, 2;) - y> =) (Ko~ w)* = Ko~y

=1 1=1

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;,)

n

> (L (@i, 2;) - y> =) (Ko~ w)* = Ko~y

=1 i=1
=a'K?a—-2y"Ka+y'y

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f? Representer Theorem: f — Z?:l a;k(z;,)

> (L (@i, 2;) - y> = " (Kol w)* = [Ka

i=1 i=1
=a'K?a—-2y"Ka+y'y

E E o k(z;, z;)o

=1 j=1

n

E k(z;,)

=1

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f? Representer Theorem: f — Z?:l a;k(z;,)

> (L (@i, 2;) - y> = " (Kol w)* = [Ka

i=1 i=1
=a'K?a—-2y"Ka+y'y

E E o k(z;, z;)o —a' Ka

=1 j=1

n

E k(z;,)

=1

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;,)

& =argmina' K?a —2y" Ka +y'y+ nia' Ko
acR”

Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;,)

& =argmina' K?a —2y" Ka +y'y+ nia' Ko
acR”
= argmina' K(K + n\)a —2y' Ko

acR"™

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;,)

& =argmina' K?a — 2y"' Ka +y'y+ na' Ko
acR”

= argmina' K(K + n\)a —2y' Ko
acR"™

Setting derivative to zero gives K (K + nAl)a = Ky,
satisfied by & = (K +nAIl) 1y

Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(x1), -+, f(zn)) + R(||fll%)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis
Many, many more...

But not everything works...e.g. Lasso |w/||1 regularizer

Some theory: generalization

e Rademacher complexity of {f € H : || f||lx < B}is
upper-bounded by B/ /nifk(z,x) <1

Some theory: generalization

e Rademacher complexity of {f € H : || f|lx < B}is
upper-bounded by B/ /nifk(z,x) <1

o Implies for L-Lipschitz losses £(-, y) that

oL B
sup E[{(f ——EK (z;),y;) < ——
f:ll flly<B VT

Some theory: generalization

e Rademacher complexity of {f € H : || f||lx < B}is
upper-bounded by B/ /nifk(z,x) <1

o Implies for L-Lipschitz losses £(-, y) that

oL B
sup E[£(f(— — E L(f(zs),y;) < ——
f:ll flly<B VT

e Same kind of rates with stability-based analyses

Some theory: generalization

Rademacher complexity of {f € H : || f|lx < B} is
upper-bounded by B/ /nifk(z,x) <1

Implies for L-Lipschitz losses £(-, y) that

2LB

wp EI(/(@),)] - 5 Y)) < 22

£:ll £y <B Vn
Same kind of rates with stability-based analyses

Implies that, if the “truth” is low-norm, most kernel
methods are O(1/4/n) suboptimal

Some theory: generalization

Rademacher complexity of {f € H : || f|lx < B} is
upper-bounded by B/ /nifk(z,x) <1

Implies for L-Lipschitz losses £(-, y) that

oL B
sup E[£(f(— — E L(f(zs),y;) < ——
f:ll flly<B VT

Same kind of rates with stability-based analyses

Implies that, if the “truth” is low-norm, most kernel
methods are O(1/4/n) suboptimal

Difficulty of learning is controlled by RKHS norm of target

Some theory: universality

e One definition: a continuous kernel on a compact metric
space X is universal if 1 is Lo,-dense in C(X):

for every continuous g : X — R, for every € > 0, there is an
f € Hwith || f — glloo = supgex|f(z) —g(z)| < e

Some theory: universality

e One definition: a continuous kernel on a compact metric
space X is universal if H is L,-dense in C(X):
for every continuous g : X — R, for every € > 0, there is an

f € Hwith [f — gllec = sup,ex|f(z) —g(z)| <€

e Implies that, on compact X, H can separate compact sets
= 3f € Hwith f(x) > 0forxz € Xy, f(x) < O0forz € X

= Which implies there are f € H with arbitrarily small loss

= Might take arbitrarily large norm:
approximation/estimation tradeoff

Some theory: universality

e One definition: a continuous kernel on a compact metric
space X is universal if H is L,-dense in C(X):
for every continuous g : X — R, for every € > 0, there is an

f € Hwith [f — gllec = sup,ex|f(z) —g(z)| <e

e Implies that, on compact X, ‘H can separate compact sets
= 3f € Hwith f(z) > 0forz € Xy, f(x) < O0forz € X

= Which implies there are f € H with arbitrarily small loss

= Might take arbitrarily large norm:
approximation/estimation tradeoff

e Can prove via Stone-Weierstrass or Fourier properties

Some theory: universality

e One definition: a continuous kernel on a compact metric
space X is universal if H is L,-dense in C(X):
for every continuous g : X — R, for every € > 0, there is an

f € Hwith [f — gllec = sup,ex|f(z) —g(z)| <€

e Implies that, on compact X, H can separate compact sets
= 3f € Hwith f(x) > 0forxz € Xy, f(x) < O0forz € X

= Which implies there are f € H with arbitrarily small loss

= Might take arbitrarily large norm:
approximation/estimation tradeoff

e Can prove via Stone-Weierstrass or Fourier properties

o Never true for finite-dim kernels: need rank(K) = n

Translation-invariant kernels on Rd

e Assume k is bounded, continuous, and translation invariant

" k(z,y) = ¢¥(z —y)

Translation-invariant kernels on Rd

e Assume k is bounded, continuous, and translation invariant
= k(z,y) = ¥(z —y)

e Then % is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

Translation-invariant kernels on Rd

e Assume k is bounded, continuous, and translation invariant

» k(z,y) = ¢¥(z —y)

e Then % is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

e If 1) € L4, the measure has a density

Translation-invariant kernels on Rd

Assume k is bounded, continuous, and translation invariant

» k(z,y) = ¢¥(z —y)

Then 1 is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

If v» € L1, the measure has a density

If that density is positive everywhere, k is universal

Translation-invariant kernels on Rd

e Assume k is bounded, continuous, and translation invariant
= k(z,y) = ¥(z —y)

e Then % is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

e If 1) € L4, the measure has a density
e If that density is positive everywhere, k is universal

e For all nonzero finite signed measures W,

[[K(z,y) dp(z) dp(y) > 0

Translation-invariant kernels on Rd

e Assume k is bounded, continuous, and translation invariant
= k(z,y) = ¥(z —y)

e Then 9 is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

e If 1) € L4, the measure has a density
e If that density is positive everywhere, k is universal
e For all nonzero finite signed measures W,

[[K(z,y) dp(z) dp(y) > 0

e True for Gaussian exp(—zi2 H-’B — sz)
o

Translation-invariant kernels on Rd

Assume k is bounded, continuous, and translation invariant
= k(z,y) = ¥(z —y)

Then 1 is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

If v» € L1, the measure has a density
If that density is positive everywhere, k is universal

For all nonzero finite signed measures L,
[[k(= y) du(z) du(y) > 0

True for Gaussian exp(—zi2 Iz — y]|*)
o

and Laplace exp(—% |z — yl|)

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — D17 for large d

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — Bx17 for large d

e Provably statistically slower than deep learning for a few
problems

= e.g. tolearn asingle ReLU, max (0, w'), need norm
exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — Bx17 for large d

e Provably statistically slower than deep learning for a few
problems

= e.g. tolearn a single ReLU, max (0, w'), need norm
exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

e O(n?) computational complexity, O(n?) memory
= Various approximations you can make

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Relationship to deep learning

e Deep models usually end as fr(z) = w} fr—1(z)

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)

e Can think of as learned kernel, k(a:, y) = fr—1 (x)fL—l (y)

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
o Can think of as learned kernel, k(z,y) = fr_1(x)fr_1(y)

e Does this gain us anything?

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr_1(x)fr_1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
o Can think of as learned kernel, k(z,y) = fr_1(x)fr_1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis...more tomorrow

o SVMs with NTK can be great on small data

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
o Can think of as learned kernel, k(z,y) = fr_1(x)fr_1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis...more tomorrow

o SVMs with NTK can be great on small data

= |Inspiration: learn the kernel model end-to-end
o Ongoing area; good results in two-sample testing,
GANSs, density estimation, meta-learning, semi-
supervised learning, ...

o Explored a bit in interactive session!

What's next

e After break: interactive session exploring w/ ridge regression

e Tomorrow: a subset of
= Representing distributions
o Uses for statistical testing + generative models

= Connections to Gaussian processes, probabilistic numerics
= Approximation methods for faster computation
= Deeper connection to deep learning

e More details on basics:
= Berlinet and Thomas-Agnan, RKHS in Probability and
Statistics

= Steinwart and Christmann, Support Vector Machines

