
Modern Kernel MethodsModern Kernel Methods  
in Machine Learning:in Machine Learning:  

Part IPart I
(she/her)

Computer Science, University of British Columbia

ETICS "summer" school, Oct 2022

Danica J. Sutherland

https://djsutherland.ml/


MotivationMotivation
Machine learning! 



MotivationMotivation
Machine learning! …but how do we actually do it?



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …

Kernels are basically a way to study doing this with any,

potentially very complicated, 



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …

Kernels are basically a way to study doing this with any,

potentially very complicated, 

Convenient way to make models on documents, graphs,

videos, datasets, …



MotivationMotivation
Machine learning! …but how do we actually do it?

Linear models! , 

Extend …

Kernels are basically a way to study doing this with any,

potentially very complicated, 

Convenient way to make models on documents, graphs,

videos, datasets, …

 will live in a reproducing kernel Hilbert space



Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.



Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.



Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.

Inner product space: a vector space with an inner product:

 for , 



Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.

Inner product space: a vector space with an inner product:

 for , 

Induces a norm: 



Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.

Inner product space: a vector space with an inner product:

 for , 

Induces a norm: 

Complete: “well-behaved” (Cauchy sequences have limits in )
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Aside: the name “kernel”Aside: the name “kernel”
Our concept: "positive semi-de�nite kernel," "Mercer

kernel," "RKHS kernel"

Semi-related: kernel density estimation

Unrelated:

The kernel (null space) of a linear map

The kernel of a probability density

The kernel of a convolution

CUDA kernels

The Linux kernel

Popcorn kernels
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Sum:  is a kernel

Is  necessarily a kernel?

Take , , .

Then 

But .
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Positive definitenessPositive definiteness

A symmetric function  (i.e. have 

) is positive semi-de�nite (psd) if for all 

, , ,

Hilbert space kernels are psd

psd functions are Hilbert space kernels

Moore-Aronszajn Theorem; we'll come back to this
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Some more ways to build kernelsSome more ways to build kernels

Limits: if  exists,  is psd

Products:  is psd

Powers:  is pd for any integer 

Exponents:  is pd

If ,  is pd

, the Gaussian kernel
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Every psd kernel  on  de�nes a (unique) Hilbert space,

its RKHS , and a map  where

Elements  are functions on , with

Combining the two, we sometimes write 

 is the evaluation functional

An RKHS is de�ned by it being continuous, or
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Moore-Aronszajn TheoremMoore-Aronszajn Theorem

Building  for a given psd :

Start with 

De�ne  from 

Take  to be completion of  in the metric from 

Get that the reproducing property holds for  in 

Can also show uniqueness

Theorem:  is psd i� it's the reproducing kernel of an RKHS
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 on 

 "corresponds to" 

If , then 

Closure doesn't add anything here, since  is closed

So, linear kernel gives you RKHS of linear functions



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional

Functions in  are bounded:



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional

Functions in  are bounded:

Choice of  controls how fast functions can vary:



More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional

Functions in  are bounded:

Choice of  controls how fast functions can vary:

Can say lots more with Fourier properties
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Kernel ridge regressionKernel ridge regression

Linear kernel gives normal ridge regression:

Nonlinear kernels will give nonlinear regression!
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Kernel ridge regressionKernel ridge regression

How to �nd ? Representer Theorem: 

Setting derivative to zero gives 

satis�ed by 
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Representer theorem applies if  is strictly increasing in

Kernel methods can then train based on kernel matrix 

Classi�cation algorithms:

Support vector machines:  is hinge loss

Kernel logistic regression:  is logistic loss

Principal component analysis, canonical correlation analysis

Many, many more…

But not everything works...e.g. Lasso  regularizer
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Some theory: generalizationSome theory: generalization

Rademacher complexity of  is

upper-bounded by  if 

Implies for -Lipschitz losses  that

Same kind of rates with stability-based analyses

Implies that, if the “truth” is low-norm, most kernel

methods are  suboptimal

Di�culty of learning is controlled by RKHS norm of target
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One de�nition: a continuous kernel on a compact metric

space  is universal if  is -dense in :

for every continuous , for every , there is an

 with 

Implies that, on compact ,  can separate compact sets
 with  for ,  for 

Which implies there are  with arbitrarily small loss

Might take arbitrarily large norm:

approximation/estimation tradeo�

Can prove via Stone-Weierstrass or Fourier properties

Never true for �nite-dim kernels: need 
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Assume  is bounded, continuous, and translation invariant

Then  is proportional to the Fourier transform of a

probability measure (Bochner's theorem)

If , the measure has a density

If that density is positive everywhere,  is universal

For all nonzero �nite signed measures , 

True for Gaussian 

and Laplace 
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Limitations of kernel-based learningLimitations of kernel-based learning
Generally bad at learning sparsity

e.g.  for large 

Provably statistically slower than deep learning for a few

problems

e.g. to learn a single ReLU, , need norm

exponential in [ ]

Also some hierarchical problems, etc [ ]

 computational complexity,  memory

Various approximations you can make

Yehudai/Shamir NeurIPS-19

Kamath+ COLT-20

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180
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Deep models usually end as 

Can think of as learned kernel, 

Does this gain us anything?

Random nets with trained last layer (NNGP) can be decent

As width , nets become neural tangent kernel

Widely used theoretical analysis...more tomorrow

SVMs with NTK can be great on small data

Inspiration: learn the kernel model end-to-end

Ongoing area; good results in two-sample testing,

GANs, density estimation, meta-learning, semi-

supervised learning, …

Explored a bit in interactive session!



What's nextWhat's next
After break: interactive session exploring w/ ridge regression

Tomorrow: a subset of

Representing distributions

Uses for statistical testing + generative models

Connections to Gaussian processes, probabilistic numerics

Approximation methods for faster computation

Deeper connection to deep learning

More details on basics:

Berlinet and Thomas-Agnan, RKHS in Probability and

Statistics

Steinwart and Christmann, Support Vector Machines


