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¢ will live in a reproducing kernel Hilbert space
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Hilbert spaces
e A complete (real erecomptex) inner product space.

e Inner product space: a vector space with an inner product:
= (a1 f1 + a2 fo,9)n = a1 ({f1,9)n + a2(f2, 9)n

. <fag>'H — <gaf>7-t
= (f, f)n > 0for f#0,(0,0) =0

Induces a norm: || |l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)
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e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on & if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (¢(x), o(y))n

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on R%: k(z,y) = (w,y)Rd
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Aside: the name “kernel”

e Our concept: "positive semi-definite kernel," "Mercer
kernel," "RKHS kernel"

e Semi-related: kernel density estimation

e Unrelated:
= The kernel (null space) of a linear map

= The kernel of a probability density

s The kernel of a convolution
s CUDA kernels
® The Linux kernel

= Popcorn kernels
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Building kernels from other kernels
e Scaling:ify > 0, k,(x,y) = vk(zx,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: k4 (xay) = k1 (:c,y) + ko (a:,y) is a kernel

-/ [¢i(z)] [o1(y)”
l{t_|_ (Cl?,y) — < _¢2 (aj)_ ’ _¢2 (y)- >'H169'H2

e Iski(x,y) — ko (x,y) necessarily a kernel?
= Take k1 (x,y) =0, ko (z,y) = zy,  # 0.

» Thenky (z,z) — ko(z,2) = —2% < 0
+ Butk(z, ) = |42}, > 0
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Positive definiteness

e Asymmetric functionk : X x X — R (i.e. have
k(xz,y) = k(y, x)) is positive semi-definite (psd) if for alln, > 1
(a1,...,a,) €ER", (21,...,2,) € X",

ZZazaJ zi,x;) >0

1=1 j=
e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this
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2
lz—yl

202

— exp ( ) the Gaussian kernel
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e Kernelis k(z,y) = (¢(z), d(v))y = 1 + zy + z%y?
e Classifier based on linear f(a?) = <w, ¢("13)>H

e f(-)is the function f itself; corresponds to vector w in R®
f(x) € Ris the function evaluated at a point

e Elements of H are functions, f : X — R
 Reproducing prop.: f(z) = (f(-), ¢(x))y for f € H
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Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#
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Moore-Aronszajn Theorem

e Building ‘H for a given psd k:
= Start with Ho = span({k(z,-) : x € X})

= Define (-, )y, from (k(z,-), k(y, ), = k(z,y)
= Take H to be completion of Hg in the metric from (-, '>Ho

= Get that the reproducing property holds for k(a:, ) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS



A quick check: linear kernels

k(z,y) =2 yon X = R?
» k(z,-) = [y — z"y] "corresponds to" x

Iff Zaz a:z,y then f( ) [Zz 1azxz]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[ fllae = /300 X aiash(zi 2p) = |23 @il
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More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional
e Functions in ’H are bounded
f(z) = (fik(z, ))u < VE(z,2)|| flln = || flln
e Choice of o controls how fast functions can vary:
flz+1t) = f(z) < ||k(z +1,-) — k(' )l flloe
\k(z +1,-) — k(z,)||2, = 2 — 2k(z,z + 1) = 2 — 2exp (—ﬂ)

0'
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More complicated: Gaussian kernels
k(z,y) = exp(5 [z — y*)

o H is infinite-dimensional
e Functions in ’H are bounded:

f(@) = (fk(z,)s < v/k(@, @) || fllae = [ fllo

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,-) — k(@', ) |la]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp( I )

0'

e Can say lots more with Fourier properties
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Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1
Linear kernel gives normal ridge regression:

. . 1O
(z) =w'®x; @ = argmin — Z(wTazz- —;)* + Al|Jw||?
werd T 1=1

Nonlinear kernels will give nonlinear regression!
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Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f ? Representer Theorem

o Let Hx = span{k(x;,)},
H | its orthogonal complement in H

e Decompose f = fx + f with fx € Hx, f1L € H,
o f(zi) = (fx + fr, k(zi,-)n = (fx, k(zi,°))n
o || £115, = x5, + I fLll3

e Minimizer needs f;, = 0, and sof = Z?:l a; k(x;, )
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Kernel ridge regression

f = argmin— 3 (f(a1) — w)? + Al FI2

fE'H n i=1

How to find f? Representer Theorem: f — Z?:l a;k(z;, )

> (L (@i, 2;) - y> = " (Kol w)* = [Ka

i=1 i=1
=a'K?a—-2y"Ka+y'y

E E o k(z;, z;)o —a' Ka
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Kernel ridge regression
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Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fern M4
How to find f? Representer Theorem: f — Z?:l a;k(z;, )

& =argmina' K?a — 2y"' Ka +y'y+ na' Ko
acR”

= argmina' K(K + n\)a —2y' Ko
acR"™

Setting derivative to zero gives K (K + nAl)a = Ky,
satisfied by & = (K +nAIl) 1y



Other kernel algorithms

Representer theorem applies if R is strictly increasing in

min L(f(x1), -+, f(zn)) + R(||fll%)

feH

Kernel methods can then train based on kernel matrix K

Classification algorithms:
= Support vector machines: L is hinge loss

» Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis
Many, many more...

But not everything works...e.g. Lasso |w/||1 regularizer
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Some theory: generalization

Rademacher complexity of {f € H : || f|lx < B} is
upper-bounded by B/ /nifk(z,x) <1

Implies for L-Lipschitz losses £(-, y) that

oL B
sup E[£(f( — — E L(f(zs),y;) < ——
f:ll flly<B VT

Same kind of rates with stability-based analyses

Implies that, if the “truth” is low-norm, most kernel
methods are O(1/4/n) suboptimal

Difficulty of learning is controlled by RKHS norm of target
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Some theory: universality

e One definition: a continuous kernel on a compact metric
space X is universal if H is L,-dense in C(X):
for every continuous g : X — R, for every € > 0, there is an

f € Hwith [ f — gllec = sup,ex|f(z) —g(z)| <€

e Implies that, on compact X, H can separate compact sets
= 3f € Hwith f(x) > 0forxz € Xy, f(x) < O0forz € X

= Which implies there are f € H with arbitrarily small loss

= Might take arbitrarily large norm:
approximation/estimation tradeoff

e Can prove via Stone-Weierstrass or Fourier properties

o Never true for finite-dim kernels: need rank(K) = n
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Translation-invariant kernels on Rd

Assume k is bounded, continuous, and translation invariant
= k(z,y) = ¥(z —y)

Then 1 is proportional to the Fourier transform of a
probability measure (Bochner's theorem)

If v» € L1, the measure has a density
If that density is positive everywhere, k is universal

For all nonzero finite signed measures L,
[ [ k(= y) du(z) du(y) > 0

True for Gaussian exp(—zi2 Iz — y]|*)
o

and Laplace exp(—% |z — yl|)
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= eg f(x1,...,24) = 3xy — Bx17 for large d

e Provably statistically slower than deep learning for a few
problems

= e.g. tolearn asingle ReLU, max (0, w' ), need norm
exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]
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Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — Bx17 for large d

e Provably statistically slower than deep learning for a few
problems

= e.g. tolearn a single ReLU, max (0, w' ), need norm
exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

e O(n?) computational complexity, O(n?) memory
= Various approximations you can make


https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180
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Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
o Can think of as learned kernel, k(z,y) = fr_1(x)fr_1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis...more tomorrow

o SVMs with NTK can be great on small data

= |Inspiration: learn the kernel model end-to-end
o Ongoing area; good results in two-sample testing,
GANSs, density estimation, meta-learning, semi-
supervised learning, ...

o Explored a bit in interactive session!



What's next

e After break: interactive session exploring w/ ridge regression

e Tomorrow: a subset of
= Representing distributions
o Uses for statistical testing + generative models

= Connections to Gaussian processes, probabilistic numerics
= Approximation methods for faster computation
= Deeper connection to deep learning

e More details on basics:
= Berlinet and Thomas-Agnan, RKHS in Probability and
Statistics

= Steinwart and Christmann, Support Vector Machines



