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Yesterday, we saw:
RKHS H is a function space, f : X — R
Reproducing property: { f, k(z, ) = f(z)

Representer theorem:
argmin L(f(21), ..., f(2n)) + B(|| fll%) € span{k(z;, )},

Can use to do kernel ridge regression, SVMs, etc
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Kernel approximations, for better computation
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Mean embeddings of distributions
 Representpointz € X ask(z,:): f(z) = (f, k(z,:))n
e Represent distribution IP as pup: Exop f(X) — <f7 .UIP’>’H

IEXNIP’ f(X) — IEXNIP’ <f7 k(Xa )>'H — <f7 IE‘:erIP’ k(Xa )>'H

= Last step assumed e.g. E 4 /k(X, X) < oo

o (up, o) = Expy~o k(X,Y)

e Okay. Why?
= One reason: ML on distributions [Szabd+ JMLR-16]

= More common reason: comparing distributions


https://arxiv.org/abs/1411.2066
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MMD properties
« MMD(P, P) = 0, symmetry, triangle inequality
o If kis characteristic, then MMD(PP, Q) = 0iff P =
n i.e. P — up isinjective
= Makes MMD a metric on probability distributions
= Universal => characteristic

o Linear kernel: MMD(P, Q) = ||up — 1o ||3 is just

Fuclidean distance between means
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Application: Kernel Herding
e Want a "super-sample" from IP: % Y. f(X;) = E f(X)
o If f € H, error < || f|lyxy MMD(P, £ 3", 6x,)

e Greedily minimize the MMD:

1 T
X € argmin K/ kX,X' k(X, X,
T+1 )g(ex XIP’( ) T"‘lizzl( )

e Get O(1/T) approximation instead of O(1/+/T) with
random samples



e Want a "supe

e If fEH, errd

o Greedily mini| -+

o G et O( ]. / T) Figure 1: First 20 samples form herding (red squares) ver-
sus i.i.d. random sampling (purple circles).

random sampres
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Estimating MMD from samples
MMD;, (P, Q) = E x x/p [B(X, X') — 2k(X, V) + k(V, V)]

’ ¥

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy) — 2mean(Kxy)

KXX K KX
SRETY - R 0301 /02

—p3 o [ 10 o2 [03[03.
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MMD vs other distances

e MMD has easy O(n?) estimator
= block or incomplete estimators are O(n®) for a € [1, 2],
but noisier

e For bounded kernel, O,(1/4/n) estimation error
= Independent of data dimension!

= But, no free lunch...the value of the MMD generally shrinks
with growing dimension, so constant O, (1/+/n) error

gets worse relatively



MMD vs other distances

\o‘eg'a‘ prob. meg, e, &,d'\v e rgenceo

wasserstein Hellinger

KL

DH(P:Q)

= sup |[Ex.pg(X) — Ey..qg(Y)|
geEH

Dy(P,Q)
- [ o (22 as

Pearson chi?

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

Ks
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Application: Two-sample testing

e Given samples from two unknown distributions

— m——

Do smokers/non-smokers get different cancers?

Do Brits have the same friend network types as Americans?
When does my laser agree with the one on Mars?

Are storms in the 2000s different from storms in the 1800s?
Does presence of this protein affect DNA binding? [Mvpiff2]

Do these dob and birthday columns mean the same thing?

Does my generative model match Pg,:4?
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Application: Two-sample testing

e Given samples from two unknown distributions
X ~P ~

e Question:is [P = ()?

e Hypothesis testing approach:

H03P: Hltp#

e Reject Hj ifM/l\ﬁ)(X, ) > cq
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What's a hypothesis test again?

don't reject Hy ¢, reject Hy (say P#Q)

probability density

—_— P=0
— P#Q

false rejection rate: want = «

power: true rejection rate

0.1 0.2 0.3 0.4 0.5
MMD(X, Y)
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MMD-based testing

— 2
e Hy: nMMD converges in distribution to...something
= [nfinite mixture of X2 s, params depend on [P and k

= Can estimate threshold with permutation testing

e« H;: \/n(MMD — MMD?) — asymptotically normal
e Any characteristic kernel gives consistent test...eventually

e Need enormous 7 if kernel is bad for problem
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Classifier two-sample tests

X Y

Train a classifier f

Evaluate accuracy of f on test set

o T(X, V') is the accuracy of f on the test set
e Under H), classification impossible: T ~ Binomial(n, l)

2
» With k(z,y) = ; f(z)f(y) where f(x) € {-1,1},
get MMD(X, V) = |T(X,V) - L
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Deep learning and deep kernels

k(z,y) = if(a:)f(y) is one form of deep kernel

Deep models are usually of the form f(z) = w' ¢, (z)
= With a learned ¢y () : X — RP

If we fix 1, have f € H, with ky(z,y) = ¢y ()" ¢y (y)
= Same idea as NNGP approximation

Generalize to a deep kernel:

ky(z,y) = & (g (), by ()
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Normal deep learning C deep kernels

» Take ky (z,9) = 5 fu () fu(y) +1
e Final function in H,, will be afy (z) + b

e With logistic loss: this is Platt scaling

On Calibration of Modern Neural Networks

Chuan Guo*! Geoff Pleiss“! Yu Sun”! Kilian Q. Weinberger !
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“Normal deep learning C deep kernels” — so?

e This definitely does not say that deep learning is (even
approximately) a kernel method

e ...despite what some people might want you to think

Computer Science > Machine Learning

[Submitted on 30 Nov 2020]

Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Pedro Domingos

e We know theoretically deep learning can learn some things
faster than any kernel method [see Malach+ ICML-21 + refs]

e But deep kernel learning # traditional kernel models
= exactly like how usual deep learning # linear models


https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2103.01210
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Optimizing power of MMD tests

/\2

e Asymptotics of MMD give us immediately that

5 (ﬁMMD2 c, )

— 2
Pr (nMMD > ca) ~
H; OH, VIO H,

MMD, o, , ¢, are constants: first term usually dominates

e Pick k to maximize an estimate of MMD? /aH1

—— R
o Use MMD from before, get o, from U-statistic theory

1
o Can show uniform Op(n 3 ) convergence of estimator

e (et better tests (even after data splitting)
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Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD (P, QQ7') on a minibatch
e MMD GAN: miny [max,; MMD,, (P, Q)]

e SMMD GAN: miny [max,;, SMMD,, (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss
for ¢/ by making witness function smooth [Arbel+ NeurlPS-18]

= Uses (f, O, k(z,)n = O, f(z)


https://arxiv.org/abs/1805.11565

Application: (S)MMD GANs

e An implicit generative model:
= A generator net outputs samples from

= Minimize estimate of MMD /(P , Q}') on a minibatch
e MMD GAN: miny [max,; MMD,, (P, Q)]

¢ SMMD GAN: miny [max,;, SMMD,; (P, Q)]

= Scaled MMD uses kernel properties to ensure smooth loss
for ¢ by making witness function smooth [Arbel+ NeurlPS-18]

= Uses (f, O, k(z,)n = O, f(z)
= Standard WGAN-GP better thought of in kernel framework


https://arxiv.org/abs/1805.11565

Application: distribution
regression/classification/...

e We can define a kernel on distributions by, e.g.,

1
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k(P, )zexp( MMD? (P, ))

e Some pointers:
[Muandet+ NeurlPS-12] [Sutherland 2016] [Szabo+ IMLR-16]


https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066

l. 2 .l A @
observed sample

distribution

label

D e 9 components

“seaside city”

and more...
Mass 7 x 101* M4

Ntampaka et al. (ApJ 2015, 2016)

=) no Cs137 present
Bl ’in et al. (NSS 2016) ,‘l‘ kgt
v ol b 0 county voted
= o o S e 54% for Obama 4
Flaxman et al. (KDD 2015)



https://arxiv.org/abs/1202.6504
https://djsutherland.ml/papers/thesis.pdf
https://arxiv.org/abs/1411.2066

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pup uncertainty



https://arxiv.org/abs/1705.04293

Example: age from face images [Law+ AISTATS-18]

Bayesian distribution regression: incorporate pup uncertainty

IMDDb database [Rothe+ 2015]: 400k images of 20k celebrities


https://arxiv.org/abs/1705.04293
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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Example: age from face images [Law+ AISTATS-18]
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Independence
e X 1l YV iff Cov(f(X),g(Y)) = 0 for all measurable f, g
e Let'simplement for RKHS functions f € H,, g € H,:

E[f(X)] E[g(Y)] =

(fs e, <M@»9>Hy

(fy (e ® 10) 9,

E[(fs ke (X, D, By (Vs 2)5 9)2, ]
= ([, Elka (X, ) ® Ey (V)] 9) 2,

Ef(X)a(Y)]



Independence
e X 1l YV iff Cov(f(X),g(Y)) = 0 for all measurable f, g
e Let'simplement for RKHS functions f € H,, g € H,:

E[f(X)]Elg(Y)] = (f, 1p)#, (L, 9)#,
— <f7 (HIP’ ® l’l’Q)g>Hw
E[f(X)g(Y)] = E[(f, ke (X, )3, By (Y 0), 9) 21, ]
— <f7 E[kw (Xa ) ® ky (Y7 )] g>7-ta:
Cov(f(X),9(Y)) = (f, Cxv 9,

where Cxy : H, — H, is

Elk, (X,-) ® ky (V)] = Elke (X, )] @ Bk, (V)]



Cross-covariance operator and independence

e Cov(f(X),9(Y)) = (f,Cxv9)n,
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Cross-covariance operator and independence
e« Cov(f(X),9(Y)) =(f,Cxy9)n,

» Cxv =Elko (X,-) @ by (Y, -)] — pp ® g

e If X 1l V,thenCyxy =0

e IfCxy =0, Cov(f(X),9(Y))=0 VfeH,,g€eH,

o If k;, £, are characteristic:
» Cxy = 0implies X 1L Y [Szabé/Sriperumbudur JMLR-18]



https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence
e Cov(f(X),9(Y)) = (f,Cxv9)n,

» Cxv =Elko (X,-) @ by (Y, -)] — pp ® g

e f X 1l V,thenCyxy =0

e IfCxy =0, Cov(f(X),9(Y))=0 VfeH,,g€H,

o If k;, £, are characteristic:
» Cxy = 0implies X 1L Y [Szabé/Sriperumbudur JMLR-18]

s X 1L YiffCxy =0



https://arxiv.org/abs/1708.08157

Cross-covariance operator and independence

Cov(f(X),9(Y)) = (f, Cxv 9)n,

Cxy = Elks (X, ) ® by (Y, )] — pp @ 1o

If X 1l Y, thenCxy =0

fCxy =0, Cov(f(X),9(Y)) =0 VfeH,,g€eH,

If k., k, are characteristic:
» Cxy = 0implies X 1L Y [Szabé/Sriperumbudur JMLR-18]

s X 1L YiffCxy =0

= X Ul Yiff0 = ||Cxv|/fg (sum squared singular values)
o HSIC: "Hilbert-Schmidt Independence Criterion"


https://arxiv.org/abs/1708.08157

Cxy =

|Cxv |

2
HS

HSIC

Elks (X, ) ® ky (Y, )] — 1 ® 1o

2
upy, — e ® Lo H’Hx(gﬁ-[y



HSIC

Elks (X, ) ® ky (Y, )] — 1 ® 1o

2
Py — 1 ® 10l g,
MMD (P, P x Q)?



|Cxv |

2
HS

HSIC

= Elk, (X, ) ® ky (Y, -)] — pp @ pg
= ||y, — k2 ® 1ol g,
= MMD(Pyy, P x Q)?
= E[ke (X, X)ky (Y, Y7)]
R 2E[kx (X7 X/)ka: (Ya Y”)]
+ E[k, (X, X7)] E[k, (Y, V7))




HSIC
Cxv = Elk:(X,-) @ ky(Y, )] — pp ® 1o

|Cxv s = llkpxy — 1p ® 103, g,
= MMD(Pxy, P x Q)
= Elk, (X, X )k, (V, V)]
— 2E[k, (X, X ko (V, V)]
+ Elke (X, X)] E[k, (Y, Y7)]

e Linear case: C'xy is cross-covariance matrix,
HSIC is squared Frobenius norm



HSIC
Cxy = Elk,(X,:) ® ky(Ya )] — pp ® HQ

ICxv s = ey, — e ® 10113, g7,
= MMD(Pxy, P x Q)
= Elk, (X, X )k, (V, V)]
— 2E[k, (X, X ko (V, V)]
+ E[k, (X, X')| E[k, (Y, V)]

e Linear case: Cxy is cross-covariance matrix,
HSIC is squared Frobenius norm

e Default estimator (biased, but simple):
Tr(HKxHKy)where H=1—11"



HSIC applications

Independence testing [Gretton+ NeurlPS-07]
Clustering [Song+ ICML-07]
Feature selection [Song+ JMLR-12]

Self-supervised learning [Li+ NeurlPS-21]

Broadly: easier-to-estimate, sometimes-nicer version of
mutual information


https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
http://www.gatsby.ucl.ac.uk/~gretton/papers/SonSmoGreetal07a.pdf
https://jmlr.csail.mit.edu/papers/volume13/song12a/song12a.pdf
https://arxiv.org/abs/2106.08320

Example: SSL-HSIC [Li+ NeurlPS-21]

SSL-HSIC

liﬁ"‘ﬁ ’

e Maximizes dependence between image features f and its
identity on a minibatch

e Using a learned deep kernel based on g


https://arxiv.org/abs/2106.08320

Recap
e Mean embedding up = E k(X )
e MMD(P, Q) = ||up — po||# is 0iff P = Q (for

characteristic kernels)
o HSIC(X, Y) = HCXYHHS = MMD(IP’Xy,IP’ X Q)z is O iff
X 1LY (for characteristic k,, k)

e After break: last interactive session exploring testing

e More details:
= Close connections to Gaussian processes [Kanagawa+ 'GPs

and Kernel Methods' 2018]

= Mean embeddings: survey [Muandet+ 'Kernel Mean Embedding
of Distributions']


https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

