In Defence of (Empirical) Neural Tangent Kernels

Danica J. Sutherland
University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

“Zig-zagging” [ICLR-22] Finetuning [ICLR-23] Active learning [NeurlPS-22] Pseudo-NTK [new!]
i Update:3696 Cifar-10
. i i T = L D e b)
. . U @ (8 — 5 e Ao
- - b0 10 4
So l
Easy sample M diu:su pl o TN % nEQ @ I~
o @ &L 25 Q 2
e 0.9 — X * =
AR AWANAW z Tl .
l fﬁ f J s T
NTK
(:1; ,y*))’ PNTK
18 34 50 101 152 200
ResNet depth
Yi Ren Yi Ren Mohamad Amin Mohamadi Mohamad Amin Mohamadi
Shangmin Guo Shangmin Guo Wonho Bae Wonho Bae

Wonho Bae

https://djsutherland.ml/
https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543

One path to NTKs

e “Learning path” of a model's predictions: ft() for some fixed & as params w; change

One path to NTKs

e “Learning path” of a model's predictions: ft() for some fixed & as params w; change

e Let's start with “plain” SGD on % Zil L, (f(z:)):

One path to NTKs (Taylor's ve rsio n)
e “Learning path” of a model's predictions: f; (%) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zil L, (f(z:)):

£1(2) = £(2) = (Vo £(@)lwe) (i1 = wr) + O [wis —wi|*)

~ J . ~ Y\’
kx1 kxp px1

One path to NTKs (Taylor's version)
e “Learning path” of a model's predictions: f;(Z) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zf;l L, (f(z:)):

ft+1 (53) — ft (53) = (wa(xi”w,:) (wt+1 — wt) + O(HWt—I—l - Wt||2)
e A

= (Ve F(@)lw,) (~1Vwly, (F(@))lw;) " + O(F)

One path to NTKs (1 ersion)

e “Learning path” of a model's predictions: f;(Z) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zf;l L, (f(z:)):

ft+1 (53) — ft (53) = (wa(xi”w,:) (wt+1 — wt) + O(HWt—I—l - Wt||2)
e A

= (Vw f(@)lw.) (=1Vwly, (£(zi))lw,) " +O(T)
0 (Ve () l,) (Vo F ())" by, (ft(wz)ZJr O(n*)

A

T

kxp pxk kxl

One path to NTKs (1 ersion)

e “Learning path” of a model's predictions: f;(Z) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zf;l L, (f(z:)):

ft+1 (57) — ft (95) = (wa(xi”wie) (wt+1 — wt) + O(HWt—I—l - Wt||2)
e A

= (Ve f(@)lw,) (=1Vwly, (F(z:))lw,) " + O(F)
0 (V@) (Vw (@))" 4 (@) + Ol ?)

A

k;rp pxk kx1
= —neNTKy, (7, ;) £, (f:(z:)) + O(n*)

e Defined eNTKyw (%, z;) = (Vw f(Z; W)) (wa(:l:z-;w))T c RFxk

One path to NTKs (1 ersion)

e “Learning path” of a model's predictions: f; (%) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zf;l L, (f(z:)):

ft+1 (53) — ft (53) = (wa(xi”w,:) (wt+1 — wt) + O(HWt—I—l - Wt||2)
> A

= (Ve f(@)lw,) (=1Vwly, (F(z:))lw,) " + O(F)
0 (V@) (Vw (@))" 4 (@) + Ol ?)

A

k;rp pxk kx1
= —neNTKy, (7, ;) £, (f:(z:)) + O(n%)

e Defined eNTKw (ffj, :Bz) — (wa(j, W)) (wa(mz, W))T c kak
= (z;,v;) step barely changes % prediction if eNTKy, (2, ;) is small

One path to NTKs (1 ersion)

e “Learning path” of a model's predictions: f;(Z) for some fixed Z as params wy change

e Let's start with “plain” SGD on % Zf;l L, (f(z:)):

ft+1 (53) — ft (53) = (wa(xi”w,:) (wt+1 — wt) + O(HWt—I—l - Wt||2)
— > 2 A

= (Ve f(@)lw,) (=1Vwly, (F(z:))lw,) " + O(F)
0 (V@) (Vw (@))" 4 (@) + Ol ?)

A

k;rp pxk kx1
= —neNTKy, (,2:) &, (fi(z:)) + O(n*)

e Defined eNTKw (ffj, :Bz) — (wa(j, W)) (wa(mz, W))T c kak
= (z;,v;) step barely changes % prediction if eNTKy, (2, ;) is small

o £y(9) = § — yforsquare loss, §, — log Zle exp(y,) for cross-entropy

e Full-batch GD:

fir1(2) — fi(2)

i
N ?

D eNTKu, (7, 2:)8, (fo(z:)) + O(7)

e Full-batch GD: “stacking things up”,

fra(5) = Fi(2) = 5 D NTKw, (7, 2:)8), (fu(2:)) + O(7")

n 3
= — 7 eNTKy, (2, X) L (fi(X)) + O(7)
kxkN kN x1

e Full-batch GD: “stacking things up”,

fra(5) = Fi(2) = 5 D NTKw, (7, 2:)8), (fu(2:)) + O(7")

n

= —~eNTKy, (7, X) Ly (£(X)) + O(7)
kxkN ENx1

e Observation I: If fis “wide enough” with any usual architecture+init* [yang+Litwin 2021],
eNTK(-, X) is roughly constant through training

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

fra(5) = Fi(2) = 5 D NTKw, (7, 2:)8), (fu(2:)) + O(7")

n

= —~eNTKy, (7, X) Ly (£(X)) + O(7)
kxkN ENx1

e Observation I: If fis “wide enough” with any usual architecture+init* [yang+Litwin 2021],
eNTK(-, X) is roughly constant through training

= Forsquare loss, Lj, (f:(X)) = f¢(X) — v;: dynamics agree with kernel regression!

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

fra(5) = Fi(2) = 5 D NTKw, (7, 2:)8), (fu(2:)) + O(7")

n

= —~eNTKy, (7, X) Ly (£(X)) + O(7)
kxkN ENx1

e Observation I: If fis “wide enough” with any usual architecture+init* [yang+Litwin 2021],
eNTK(-, X) is roughly constant through training

= Forsquare loss, Lj, (f:(X)) = f¢(X) — v;: dynamics agree with kernel regression!

t—00

" ft(2) — eNTKyw, (7, X) eNTKw, (X, X) " (y — fo(X)) + fo(7)

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

fra(5) = Fi(2) = 5 D NTKw, (7, 2:)8), (fu(2:)) + O(7")

n ~
T eNTKy, (7,) L (£/(X)) + O()
kx kN kN x 1

e Observation I: If fis “wide enough” with any usual architecture+init* [yang+Litwin 2021],
eNTK(-, X) is roughly constant through training
= Forsquare loss, Lj, (f:(X)) = f¢(X) — v;: dynamics agree with kernel regression!

t—00

" ft(2) — eNTKyw, (7, X) eNTKw, (X, X) " (y — fo(X)) + fo(7)

e Observation lIl: As f becomes ‘infinitely wide"” with any usual architecture+init* [Yang 2019],
eNTKy, (z1, z2) —> NTK(xz1,x2), independent of the random wy

https://arxiv.org/abs/2105.03703
https://arxiv.org/abs/1910.12478

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m ogithub.com/google/neural-tangents

https://github.com/google/neural-tangents

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m ogithub.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m ogithub.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

= Good results in statistical testing [Jia+ 2021], dataset distillation [Nguyen+ 2021],
clustering for active learning batch queries [Holzmuller+ 2022], ...

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663
https://proceedings.mlr.press/v139/jia21a.html
https://arxiv.org/abs/2107.13034
https://arxiv.org/abs/2203.09410

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

3

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn =~ 1200000, £k = 1 000: 11.5 million terabytes (exabytes)

3

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn =~ 1200000, £k = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNs), each pair very slow / memory-intensive

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn =~ 1200000, £k = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNs), each pair very slow / memory-intensive

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn =~ 1200000, £k = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNs), each pair very slow / memory-intensive

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o eNTK stays =~ constant

o Internal activations in the networks don't change much [Chizat+ 2019] [Yang/Hu 2021]

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically % memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk X nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn =~ 1200000, £k = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNs), each pair very slow / memory-intensive

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o eNTK stays =~ constant

o Internal activations in the networks don't change much [Chizat+ 2019] [Yang/Hu 2021]

= We now know many problems where gradient descent on an NN > any kernel method
o Cases where GD error — 0, any kernel is barely better than random [Malach+ 2021]

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2103.01210

What can we learn from empirical NTKs?
In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

 Plus: efficiently approximating eNTKs for large output dimensions k, with guarantees

What can we learn from empirical NTKs?
In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

 Plus: efficiently approximating eNTKs for large output dimensions k, with guarantees

Better supervisory signal implies better learning
Classification: targetis Lp(f) = E(z,) £(f(),y) = Ez Ey, £(f(x),y)

Normally: see {(x;, ¥;) }, minimize

Better supervisory signal implies better learning
* Classification: targetis Lp(f) = E(g) £(f(x),y) = Ez Eyp £(f(),y)

e Normally: see {(z;, ;) }, minimize

N N k
L(f) = & D UF @), 00) = = 30 D M =)e(f(z:),)

1=1 1=1 c=1

Better supervisory signal implies better learning
Classification: targetis Lp (f) = E(;) £(f(),y) = Ez Ey, £(f(),y)

Normally: see {(z;, ;) }, minimize (Z(g}) e R¥ is vector of losses for all possible labels)

N k
L) = 5 L)) = 37 3D M = S 0) = 57 e -

N
1=1 1=1 c=1

Better supervisory signal implies better learning
* Classification: targetis Lp(f) = E(g) £(f(x),y) = Ez Eyp £(f(),y)

e Normally: see {(;,v;)}, minimize (Z(g}) e R¥ is vector of losses for all possible labels)

N N k
L) = 5 DG = 7 D01 = el Zey -

1=1 c=1

e Potentially better scheme: see {(z;, p!*")}, minimize L*"(f) = ~ pr“’" A (f(z

Better supervisory signal implies better learning
* Classification: targetis Lp(f) = E(g) £(f(x),y) = Ez Eyp £(f(),y)

e Normally: see {(;,v;)}, minimize (Z(g}) e R¥ is vector of losses for all possible labels)

N N k
L(f) = 5 DU, u) = 37 DD T = (S Zey -

1=1 c=1

e Potentially better scheme: see {(z;, p/*")}, minimize L*"(f Zpt“’" ((f

= Can reduce variance |fpt‘”' ~ p:, the true conditional probabllltles

7!

Better supervisory signal implies better learning

e Classification: targetis Lp(f)

E(zy £(f(z),y) = E;

e Normally: see {(;,v;)}, minimize (Z(g}) e R¥ is vector of losses for all possible labels)

L(f)

1 N
= =>4

1=1

e Potentially better sch

m Can reduce varian

1 <& —
~ 26w ()

0.840 Pbve o 1=1
[’.... 2%. o®
0 °* "o PN *%e
+ 0.838 c ca aS N -
3 c % @go tar .
c 0.836 A .:‘1 :‘. & E :pz £ (f(wz))
S, e Noisyp ®00 g0 OO i=1

1 OHT c @

§ 0.834 A e e o & :..£~ S
O 0.832 A ar ¢
< KD

0.830 A ESKD c

0 5 10 15 20 25 30

L2-distance of p_tar and p*

Knowledge distillation

e Process:
= Train a teacher %" on {(x;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f%%""(x;))} with Lt

f.student ftea,cher

e Usually is “smaller” than

Knowledge distillation

e Process:
= Train a teacher %" on {(x;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f%%""(x;))} with Lt

f.student]l:tea,cher

e Usually is “smaller” than

e But “self-distillation” (using the same architecture), often f*™9€" outperforms fieacher|

Knowledge distillation

Process:
= Train a teacher %" on {(x;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f%%""(x;))} with Lt

f.student ftea,cher

Usually is “smaller” than
But “self-distillation” (using the same architecture), often " outperforms fieacher|

One possible explanation: fte“Cher(a:z-) is closer to p; than sampled y;

Knowledge distillation

Process:
= Train a teacher %" on {(x;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f%%""(x;))} with Lt

f.student ftea,cher

Usually is “smaller” than

But “self-distillation” (using the same architecture), often " outperforms fieacher|

]ctea,cher (

One possible explanation: ;) is closer to p; than sampled y;

But why would that be?

Zig-Zagging behaviour in learning

Update:3696
L 4 L 4
. 4
Easy sample Medium sample

Hard sample

Hard sample

Plots of (three-way) probabilistic predictions: X shows p>, X shows y;

eNTK explains it

e Let ¢;(Z) = softmax(f; (7)) € RF; for cross-entropy loss, one SGD step gives us

) — a:(7) =1 Ai(7) eNTKw, (7, ;) (0] — g¢(2:)) + O(n°)

&

qt+1 (

A: (%) = diag(q:(£)) — q:(£)q: (&) is the covariance of a Categorical(g; (Z))

eNTK explains it

e Let ¢;(Z) = softmax(f; (7)) € RF; for cross-entropy loss, one SGD step gives us

) — a:(7) =1 Ai(7) eNTKw, (7, ;) (0] — g¢(2:)) + O(n°)

A: (%) = diag(q:(£)) — q:(£)q: (&) is the covariance of a Categorical(g; (Z))

&

qt+1 (

e epoch start
.v*‘ + epoch end
8 e Xo update start
» . X L . + Xo update end
N : epoch 1: *{-—b —— Other Xu update
- + 1 H® ®
) epoch 3 "%.;.
17 -
Pl N
,’I \‘|+ ~ epoch 10: .*"
v * /!
\\‘--"1 ,) . .
2 0 06 08 10 e—eee— poch 90: +@=——e

eNTK explains it

e Let ¢;(Z) = softmax(f; (7)) € RF; for cross-entropy loss, one SGD step gives us

@+1(7) — q:(2) = 1 Ae(7) eNTKw, (2,2:) (0} — g¢(2:)) + O(17°)
A: (%) = diag(q:(£)) — q:(£)q: (&) is the covariance of a Categorical(g; (Z))
.. T ehochend
8 . ‘s e Xo update start

, 25 epoch 1:1,: —i{-—b - é(:hﬁdxaiszgte

:D ® . +,% .‘P
o ;114 epoch 3: e
l/"-‘\‘: . epoch 10: .*"0
\ - ! ’
,2\"'-0-:'/ ______ epoch 90: +4-@=——e

e Improves distillation (esp. with noisy labels) to take moving average of g; (x;) as D;

tar

What can we learn from empirical NTKs?

In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating eN'TKs for large output dimensions k, with guarantees

Fine-tuning

Xpr — PT-backbone |—— hZZd — PT-loss

v z = f(Xps) q=g(2)

X DS-backb DS-head lS-Ioss
— - — - —
DS ackpone ed (CI; y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(z)

= Fine-tuning: update head g(z) and backbone z = f(«) together

Fine-tuning

Xpr — PT-backbone |—— hZZd — PT-loss

v z = f(Xps) q=9(2)

X DS-backb DS-head lS-Ioss
— - — - —
DS ackpone ed (CI; y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(z)

= Fine-tuning: update head g(z) and backbone z = f(«) together

e |f we only fine-tune: noise from random head might break our features!

Fine-tuning

Xpr — PT-backbone |—— hZZd — PT-loss

v z = f(Xps) q=9(2)

X DS-backb DS-head lS-Ioss
— - — - —
DS ackpone ed (CI; y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(z)

= Fine-tuning: update head g(z) and backbone z = f(«) together

e |f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!

Fine-tuning

Earlier Stopping

-100

| PT 96.7 1
XPT —| PT-backbone |—— — PT-loss o5
_ head 96.6 HP t
T L, (0]
""""I' """ 96.5 1 Llgo converge
copy 96.4] o
v z = f(Xps) q=9(2)
DS-loss 96.3 —+— FT valid-acc 50
XDS —|DS-backbone| — | DS-head| — L(q,y) 96.2] —+— HP train-acc
24 Random 5 . -~
10 10 10
Head HP epochs

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(z)

= Fine-tuning: update head g(z) and backbone z = f(«) together

e |f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

7 \\ o/ 7

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

N

eNTK of backbone directio;lrof head “energy”

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

7 \\ o/ 7

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

N

eNTK of backbone directio;lrof head “energy”

e |finitial “energy”, e.g. sz’,yi ey. — Do (azz)H is small, features don't change much

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

7 \\ o/ 7

N

eNTK of backbone directio;lrof head “energy”

ey. — Do (azz)| , is small, features don't change much

e |f we didn't do any head probing, “direction” is very random, especially if g is rich

e Ifinitial “energy”, e.g. K, .

How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

7 \\ o/ 7

N

eNTK of backbone directio;lrof head “energy”

ey. — Do (azz)| , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if g is rich

If initial “energy”, e.g. [£;, .

Specializing to simple linear-linear model, can get insights about trends in 2

How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

7 \\ o/ 7

N

eNTK of backbone directio;lrof head “energy”

ey. — Do (azz)| , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if g is rich

If initial “energy”, e.g. [£;, .

Specializing to simple linear-linear model, can get insights about trends in 2

Recommendations from paper:
= Early stop during head probing (ideally, try multiple lengths for downstream task)

= | abel smoothing can help; so can more complex heads, but be careful

How good will our fine-tuned features be? [Wei/Hu/Steinhardt 2022]

https://arxiv.org/abs/2203.06176

What can we learn from empirical NTKs?

In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating eN'TKs for large output dimensions k, with guarantees

Pool-based active learning

Pool-based active learning

Pool-based active learning

Pool-based active learning

Pool-based active learning

Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

st ()= 160+ 0t (5 v, (%2, [22]) ([- ([])

Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

st ()= 160+ 0t (5 v, (%2, [22]) ([- ([])

~1
= Rank-one updates for efficient computation: schema O+ [' x | (QB)

Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

st ()= 160+ 0t (5 v, (%2, [22]) ([- ([])

~1
= Rank-one updates for efficient computation: schema O+ [' x | (QB)

e We prove this is exact for infinitely wide networks
s fo — fr— fﬁu{(wi,yi)} agrees with direct fo — fﬁu{(wi,yi)}

Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

st ()= 160+ i (5 [avme, ([, [22]) (] - ()

~1
= Rank-one updates for efficient computation: schema O+ [' x | (BB)

e We prove this is exact for infinitely wide networks
s fo — fr— fEU{(wi,yz-)} agrees with direct fo — fﬁu{(wi,yi)}

e | ocal approximation with eNTK “should” work much more broadly than “NTK regime”

Much faster than SGD

- Naive NTK w/o Block! = NTK

- 3hr

3 17min -

-2min

01 2 3 45 6 789
Cycle

Time

Much more effective than infinite NTK and one-step SGD

—o— NN NTK —eo— NN 1-Step —e& - GP
—&— NN Inf NTK —e— NN (Random) =—e = GP (Random)

0 1 2 3 4 5 6 7 8 9

Matches/beats state of the art

—— NTK —— BADGE —— Margin —— NTK —— BADGE —— Margin —— NTK —— BADGE —— Margin
Bandom —— Entropy —— LL4AL Random —— Entropy Random —— Entropy
1] 2] .
S < S
O 01! o 1 o1
& o]
< g1 /88 90 91 91,/91 92 92 92 93(% < 0] <
< —1 / < 55 65 71 75 78 80 82 83 84 85(% <
—11 01
60 66 67(%)
-2 o
01 2345¢6 7 89 0123 45¢6 7 89 0 1 2 3 4 5 6 7
Cycle Cycle Cycle
(a) SVHN: 1-layer WideResNet (b) CIFARI10: 2-layer WideResNet (c) CIFAR100: ResNet18

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

Downside: usually more computationally expensive (especially memory)

Enables new interaction modes

What can we learn from empirical NTKs?

In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating eNTKSs for large output dimensions k, with guarantees

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...

e With k classes, eNTK (X, X) € R¥VX*¥N _ hotentially very big

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
e With k classes, eNTK (X, X) € R¥VX*¥N _ hotentially very big

e But actually, we know that Ey, eNTK, (21, 2) is diagonal for most architectures
= Let pNTK,, (21,22) = [V f1 (€1)][Vaw f1 (22)) .

A\ N\ J
Vg Vg

1xp px1l
Ew eNTKy (21, 22) = Ey [pNTK,, (21, 22)]Iz. pNTK(X,X) € RV*Y (no k)

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
e With k classes, eNTK (X, X) € R¥VX*¥N _ hotentially very big

e But actually, we know that Ey, eNTKy, (21, 22) is diagonal for most architectures
= Let pNTK,, (21,%2) = [V f1 (€1)][Va f1 (22)) .

A\ N\ J
Vs Vs

1xp px1l
Ew eNTKy (21, 22) = Ey [pNTK, (21, 22)]Iz. pNTK(X,X) € RV*Y (no k)

1
vk

= Can also use “sum of logits” 2?21 f; instead of just “first logit” f;

Approximating empirical NTKs

| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
With k classes, eNTK (X, X) € R¥V*EN _ potentially very big

But actually, we know that Ey, eNTKy, (21, 2) is diagonal for most architectures
= Let pNTK,, (21,22) = [V f1 (€1)][Vaw f1 (22)) .

A\ N\ J
Vg Vg

1xp px1l
Ew eNTKy (21, 22) = Ey [pNTK, (21, 22)]Iz. pNTK(X,X) € RV*Y (no k)
1
vk

Lots of work (including above) has used pNTK instead of eNTK
= Often without saying anything; sometimes doesn't seem like they know they're doing it

= Can also use “sum of logits” 2?21 f; instead of just “first logit” f;

Approximating empirical NTKs

| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
With k classes, eNTK (X, X) € R¥V*EN _ potentially very big

But actually, we know that Ey, eNTKy, (21, 2) is diagonal for most architectures
= Let pNTK,, (21,%2) = [V f1 (€1)][Va f1 (22)) .

A\ N\ J
Vs Vs

1xp px1l
Ew eNTKy (21, 22) = Ey [pNTK, (21, 22)]Iz. pNTK(X,X) € RV*Y (no k)
1
vk

Lots of work (including above) has used pNTK instead of eNTK
= Often without saying anything; sometimes doesn't seem like they know they're doing it

= Can also use “sum of logits” 2?21 f; instead of just “first logit” f;

Can we justify this more rigorously?

PNTK motivation
e Say f(x) = Vé(z), ¢(z) € R" and V € R¥" has rows v; € R with iid entries

PNTK motivation
e Say f(x) = Vé(z), d(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

PNTK motivation
e Say f(x) = Vé(z), ¢(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) ;7 = v;!- eNTK‘fV\V (z1,22) vy +1(j = P p(z1)" o)

PNTK motivation
e Say f(x) = Vé(z), d(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) ;7 = v;!- eNTK‘fV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

PNTK motivation
e Say f(x) = Vé(z), ¢(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) ;7 = v;!- eNTK‘fV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

e We want to bound difference eNTK (1, x2) — pNTK (1, 22) I}

PNTK motivation
e Say f(x) = Vé(z), d(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) 7 = 'v;'.- eNTKfV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

e We want to bound difference eNTK (1, x2) — pNTK (1, 22) I}
= Want vIAvl and v}Avj to be close, and ’U;!-A’Uj/ small, for random v and fixed A

PNTK motivation
e Say f(x) = Vé(z), ¢(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) ;7 = v;!- eNTK‘fV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

e We want to bound difference eNTK (1, x2) — pNTK (1, 22) I}
= Want vIAvl and v}Avj to be close, and ’U;!-A’Uj/ small, for random v and fixed A

eNTK — pNTK I eNTK?|| +4vh gp2
F < d klog —
|eNTK]|| 5 " Tr(eNTK?) 0

= Using Hanson-Wright:

PNTK motivation
e Say f(x) = Vé(z), d(z) € R" and V € R¥" has rows v; € R with iid entries

o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) 7 = 'v;'.- eNTKfV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

e We want to bound difference eNTK (1, x2) — pNTK (1, 22) I}
= Want vIAvl and v}Avj to be close, and ’U;!-A’Uj/ small, for random v and fixed A

[eNTK —pNTK Il _ [eNTK®|, +4vh ok
=~ og ——
|eNTK]|| 5 Tr(eNTK?) 0

= Using Hanson-Wright:

= Fully-connected RelLU nets at init., fan-in mode: numerator (’)(h\/ﬁ), denom @(h2)

PNTK's Frobenius error

FCN ConvNet ResNetl8 WideResNet
1.2 —— WD256 —— WD 2048 0-951]
:LLD- — WD 512 —— WD 4096 0.90 1
GC)D — WD 1024 — WD 8192
=58l 0.851
= 0.80 1
o 0.6
1 o 0.751 m—r
® - 0.70 =— WF8
& —— WF16
=021 0.65 1 — WF32
—— WFB4
0.0 : - : 0.60 ! . ; ; ;] ! + !
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: Evaluating the relative difference of Frobenius norm of ©4(D, D) and ©4(D, D) ® I, at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©||» and
|©¢ ® Ip|| F at initialization.

PNTK's Frobenius error

FCN ConvNet ResNetl8 WideResNet
1.2 —— WD256 —— WD 2048 0.951 1
~.,] —— WD 512 —— WD 4096 0.901
S —— WD 1024 —— WD 8192
=0.8] 0.85-
= 0.80 1
© 0.6
| 0.75 p——
® 04 _EE; — WF1 —— WF8
2 0.70 1 WE 16 02 —— WF2 —— WF16
0] T . p— o —
Q0.2 0.651 4 wE3 WF 4 WF 32
—— WF 64 0.1 =
0.0 ; - : 0.60 ! . ; ; ;] ! + !
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: Evaluating the relative difference of Frobenius norm of ©4(D, D) and ©4(D, D) ® I, at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©||» and
|©¢ ® Ip|| F at initialization.

Same kind of theorem / empirical results for largest eigenvalue,
and empirical results for Apin, condition number

Kernel regression with pNTK

e Reshape things to handle prediction appropriately:

feNTK():fO()+ eNTKWo(7X)eNTKW0(X X) (y fO())

N “ — Y
kx1 kx1 kExkN kkaN kN><1

-

fotic (2) = fo(2) + (PNTKu, (2, X) PNTK,, (X, X) ™ (v = fo (X))

——-— = ~
kx1 kx1 1xN N><N ka

+ We have | foxtkc(7) — fonmic (7)]] = O(-) again

Kernel regression with pNTK

FCN ConvNet ResNet18 WideResNet

1.0
1.0 _\

0.9

— WF2
— WF4
—— WF8
— WF 16
WF 32

0.8 1

0.8 0.6

0.7 0.4

0.6 021

—— WF 32

0.5] — wFe4 0.0] —
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch
Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random

CIFAR-10 points and testing on |X| = 500. For wider NN, the relative difference in f%m(X) and f!"(X) decreases at
initialization. Surprisingly, the difference between these two continues to quickly vanish while training the network.

FCN ConvNet ResNetl8 WideResNet
—— WD 256 7
—— WD 512]
3 —— WD 1024 6
< —— WD 2048 5
e —— WD 4096 4]
3] —— WD 8192
< 3
17
& 2
< 1
0_
T T T T _1 T T T
0 20 100 150 200 0 50 100 150 200 0 a0 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of f%" and f%" at initialization. Again, the
difference between these two continues to vanish throughout the training process using SGD.

Cifar-10
10-1 o :
_____ -
J",-F—-.
10-2 4
I
I
]
E1{]_3 ir;
'
- &
I | |
I Sl
o——""""
1072 4 ;’.r —
! -®- pNTK
18 34 350 101 152 200

Figure 1: Wall-clock time to evaluate the eNTK and pNTK for one pair of inputs, across datasets and ResNet depths.

ResNet depth

Cifar-100
ol) — -
="
==~
”
‘]_0—2 ;;’
r
'
) ¢
o 1073
g
[
10744
—————— "
==
"""
10-5 {,x —
4 -#- pNTK
18 34 50 101 152 200

Tiny ImageNet (200)

- S }
I -
f.._
f"‘
L
.
- —..— - -
- -8--="
T -e- eNTK
v -®- pNTK
18 34 30 101 152 200

PNTK speed-up on active learning task

. pNTK - eNTK
08 1 - 50min
96 -
- 38min
§ 04 1 o
> -26min E
O _
> 92
90 - - 14min
88 - _
- 2min

O 1 2 3 4 5 6 7 8 9
Cycle

pPNTK for full CIFAR-10 regression
e eNTK(X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN - ConvNet ResNetl8 WideResNet

80

75

701

65 1

Test Accuracy (%)
[} [Su] [=)]
. < o <

e 45 —— WD256 —— WD 2048 60 1 451
Prvil —— WD 512 —— WD 4096 —— WF4 —— WFI16 —— WF1 —— WF4 —— WF2 —— WF8
10 —— WD 1024 —— WD 8102 55 1 — WF8 —— WF32 401 — WF2 —— WF38 —— WF4 —— WF 16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f"" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".

pPNTK for full CIFAR-10 regression
e eNTK(X, X) on CIFAR-10: 1.8 terabytes of memory
e pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl8 WideResNet

N
w

Test Accuracy (%)
[} [Su] [=)]
. < o <

— WD 256 —— WD 2048

451

;Eh'n

—— WD 512 —— WD 4096 —— WF4 —— WF16 —— WF1 —— WF4 —— WF2 —— WF8
10 —— WD 1024 —— WD 8102 55 1 — WF8 —— WF32 401 — WF2Z —— WF8 —— WF4 —— WF 16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f"" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f %",

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

pPNTK for full CIFAR-10 regression
e eNTK(X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl8 WideResNet

N
w

Test Accuracy (%)
[} [Su] [=)]
. < o <

— WD 256 —— WD 2048

451

;Eh'n

—— WD 512 —— WD 4096 —— WF4 —— WF16 —— WF1 —— WF4 —— WF2 —— WF8
10 —— WD 1024 —— WD 8102 55 1 — WF8 —— WF32 401 — WF2Z —— WF8 —— WF4 —— WF 16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f"" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)
e Way worse than SGD

Recap
eNTK is a good tool for intuitive understanding of the learning process
Ren, Guo, S. Better Supervisory Signals by Observing Learning Paths

Ren, Guo, Bae, S. How to prepare your task head for finetuning

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S. Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S. A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel

https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543

