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e Observation I: If fis “wide enough” with any usual architecture+init* [yang+Litwin 2021],
eNTK(-, X) is roughly constant through training
= Forsquare loss, Lj, (f:(X)) = f¢(X) — v;: dynamics agree with kernel regression!
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e Observation lIl: As f becomes ‘infinitely wide"” with any usual architecture+init* [Yang 2019],
eNTKy, (z1, z2) —> NTK(xz1,x2), independent of the random wy
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e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m ogithub.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

= Good results in statistical testing [Jia+ 2021], dataset distillation [Nguyen+ 2021],
clustering for active learning batch queries [Holzmuller+ 2022], ...


https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663
https://proceedings.mlr.press/v139/jia21a.html
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= For deep/complex models (especially CNNs), each pair very slow / memory-intensive

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o eNTK stays =~ constant

o Internal activations in the networks don't change much [Chizat+ 2019] [Yang/Hu 2021]

= We now know many problems where gradient descent on an NN > any kernel method
o Cases where GD error — 0, any kernel is barely better than random [Malach+ 2021]


https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2103.01210

What can we learn from empirical NTKs?
In this talk:
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e As a practical tool for approximating “lookahead” in active learning

 Plus: efficiently approximating eNTKs for large output dimensions k, with guarantees
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Better supervisory signal implies better learning

e Classification: targetis Lp(f)

E(zy £(f(z),y) = E;
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Knowledge distillation

Process:
= Train a teacher %" on {(x;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f%%""(x;))} with Lt

f.student ftea,cher

Usually is “smaller” than

But “self-distillation” (using the same architecture), often " outperforms fieacher|

]ctea,cher (

One possible explanation: ;) is closer to p; than sampled y;

But why would that be?
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e Let ¢;(Z) = softmax(f; (7)) € RF; for cross-entropy loss, one SGD step gives us
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e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(z)

= Fine-tuning: update head g(z) and backbone z = f(«) together

e |f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!
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How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

N
21 () — 2(2) = 57 D NTKY, (3,7:) (Vear(2:)' (e, — ai(a:))+ Or')

7 \\ o/ 7

N

eNTK of backbone directio;lrof head “energy”

ey. — Do (azz)| , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if g is rich

If initial “energy”, e.g. [£;, .

Specializing to simple linear-linear model, can get insights about trends in 2

Recommendations from paper:
= Early stop during head probing (ideally, try multiple lengths for downstream task)

= | abel smoothing can help; so can more complex heads, but be careful



How good will our fine-tuned features be? [Wei/Hu/Steinhardt 2022]
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Approximate retraining with local linearization

* Given f trained on labeled data £, approximate fzug(z;,y.)y With local linearization

7yz')

st ()= 160+ i (5 [ avme, ([, [22]) (] - ()

~1
= Rank-one updates for efficient computation: schema O+ [ ' x | (BB)

e We prove this is exact for infinitely wide networks
s fo — fr— fEU{(wi,yz-)} agrees with direct fo — fﬁu{(wi,yi)}

e | ocal approximation with eNTK “should” work much more broadly than “NTK regime”



Much faster than SGD

- Naive NTK w/o Block! = NTK
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Much more effective than infinite NTK and one-step SGD
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Matches/beats state of the art
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Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

Downside: usually more computationally expensive (especially memory)



Enables new interaction modes
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In this talk:

e As a theoretical-ish tool for local understanding:
= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating eNTKSs for large output dimensions k, with guarantees
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| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
With k classes, eNTK (X, X) € R¥V*EN _ potentially very big

But actually, we know that Ey, eNTKy, (21, 2) is diagonal for most architectures
= Let pNTK,, (21,%2) = [V f1 (€1)][Va f1 (22)) .

A\ N\ J
Vs Vs

1xp px1l
Ew eNTKy (21, 22) = Ey [pNTK, (21, 22)]Iz. pNTK(X,X) € RV*Y (no k)
1
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Lots of work (including above) has used pNTK instead of eNTK
= Often without saying anything; sometimes doesn't seem like they know they're doing it

= Can also use “sum of logits” 2?21 f; instead of just “first logit” f;

Can we justify this more rigorously?
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o Ifv;; ~N(O, 0?), then vy and ﬁ Z§:1 v; have same distribution

eNTKy (z1,%2) 7 = 'v;'.- eNTKfV\V (z1,22) vy +1(j = P p(z1)" o)
PNTK,, (21, 25) = v] eNTK{, (21, 22) 1 + $(21)" ¢(22)

e We want to bound difference eNTK (1, x2) — pNTK (1, 22) I}
= Want vIAvl and v}Avj to be close, and ’U;!-A’Uj/ small, for random v and fixed A
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= Using Hanson-Wright:

= Fully-connected RelLU nets at init., fan-in mode: numerator (’)(h\/ﬁ), denom @(h2)



PNTK's Frobenius error

FCN ConvNet ResNetl8 WideResNet
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Figure 3: Evaluating the relative difference of Frobenius norm of ©4(D, D) and ©4(D, D) ® I, at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©||» and
|©¢ ® Ip|| F at initialization.
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Same kind of theorem / empirical results for largest eigenvalue,
and empirical results for Apin, condition number



Kernel regression with pNTK

e Reshape things to handle prediction appropriately:

feNTK( ):fO( )+ eNTKWo( 7X)eNTKW0(X X) (y fO( ))

N “ — Y
kx1 kx1 kExkN kkaN kN><1

-

fotic (2) = fo(2) + (PNTKu, (2, X) PNTK,, (X, X) ™ (v = fo (X))

——-— = ~
kx1 kx1 1xN N><N ka

+ We have | foxtkc(7) — fonmic (7)]] = O(-) again



Kernel regression with pNTK

FCN ConvNet ResNet18 WideResNet
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Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random

CIFAR-10 points and testing on |X| = 500. For wider NN, the relative difference in f%m(X) and f!"(X) decreases at
initialization. Surprisingly, the difference between these two continues to quickly vanish while training the network.
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Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of f%" and f%" at initialization. Again, the
difference between these two continues to vanish throughout the training process using SGD.
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PNTK speed-up on active learning task
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pPNTK for full CIFAR-10 regression
e eNTK(X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f"" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of f"" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f%".

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)
e Way worse than SGD



Recap
eNTK is a good tool for intuitive understanding of the learning process
Ren, Guo, S. Better Supervisory Signals by Observing Learning Paths

Ren, Guo, Bae, S. How to prepare your task head for finetuning

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S. Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S. A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel


https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543




