
In Defence of (Empirical) Neural Tangent KernelsIn Defence of (Empirical) Neural Tangent Kernels
(she)

University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

“Zig-zagging” []

Yi Ren

Shangmin Guo

Finetuning []

Yi Ren

Shangmin Guo

Wonho Bae

Active learning []

Mohamad Amin Mohamadi

Wonho Bae

Pseudo-NTK []

Mohamad Amin Mohamadi

Wonho Bae

MSR Montréal / Mila - March 21, 2023

Danica J. Sutherland

ICLR-22 ICLR-23 NeurIPS-22 new!

1

https://djsutherland.ml/
https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543

One path to NTKsOne path to NTKs

“Learning path” of a model's predictions: for some fixed as params change

1

One path to NTKsOne path to NTKs

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

Defined

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

Defined

 step barely changes prediction if is small

1

One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions: for some fixed as params change

Let's start with “plain” SGD on :

Defined

 step barely changes prediction if is small

 for square loss, for cross-entropy
1

Full-batch GD:

1

Full-batch GD: “stacking things up”,

1

Full-batch GD: “stacking things up”,

Observation I: If is “wide enough” with any usual architecture+init* [],

 is roughly constant through training

Yang+Litwin 2021

1

https://arxiv.org/abs/2105.03703

Full-batch GD: “stacking things up”,

Observation I: If is “wide enough” with any usual architecture+init* [],

 is roughly constant through training

For square loss, : dynamics agree with kernel regression!

Yang+Litwin 2021

1

https://arxiv.org/abs/2105.03703

Full-batch GD: “stacking things up”,

Observation I: If is “wide enough” with any usual architecture+init* [],

 is roughly constant through training

For square loss, : dynamics agree with kernel regression!

Yang+Litwin 2021

1

https://arxiv.org/abs/2105.03703

Full-batch GD: “stacking things up”,

Observation I: If is “wide enough” with any usual architecture+init* [],

 is roughly constant through training

For square loss, : dynamics agree with kernel regression!

Observation II: As becomes “infinitely wide” with any usual architecture+init* [],

, independent of the random

Yang+Litwin 2021

Yang 2019

1

https://arxiv.org/abs/2105.03703
https://arxiv.org/abs/1910.12478

Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

1

Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets understanding NTK norm of functions

1

Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets understanding NTK norm of functions

Can compute exactly for many architectures

github.com/google/neural-tangents

1

https://github.com/google/neural-tangents

Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets understanding NTK norm of functions

Can compute exactly for many architectures

A great kernel for many kernel methods!

Using in SVMs was then-best overall method across many small-data tasks []

github.com/google/neural-tangents

Arora+ 2020

1

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663

Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets understanding NTK norm of functions

Can compute exactly for many architectures

A great kernel for many kernel methods!

Using in SVMs was then-best overall method across many small-data tasks []

Good results in statistical testing [], dataset distillation [],

clustering for active learning batch queries [], …

github.com/google/neural-tangents

Arora+ 2020

Jia+ 2021 Nguyen+ 2021

Holzmüller+ 2022

1

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663
https://proceedings.mlr.press/v139/jia21a.html
https://arxiv.org/abs/2107.13034
https://arxiv.org/abs/2203.09410

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

1

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

1

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

1

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

Practical performance:

Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

1

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

Practical performance:

Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

Theoretical limitations:

NTK “doesn't do feature learning”:

 stays constant

Internal activations in the networks don't change much [] []Chizat+ 2019 Yang/Hu 2021

1

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522

But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically memory and to computation

CIFAR-10 has , : an matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

Practical performance:

Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

Theoretical limitations:

NTK “doesn't do feature learning”:

 stays constant

Internal activations in the networks don't change much [] []

We now know many problems where gradient descent on an NN any kernel method

Cases where GD error , any kernel is barely better than random []

Chizat+ 2019 Yang/Hu 2021

Malach+ 2021

1

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2103.01210

What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1

What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize (is vector of losses for all possible labels)

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize (is vector of losses for all possible labels)

Potentially better scheme: see , minimize

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize (is vector of losses for all possible labels)

Potentially better scheme: see , minimize

Can reduce variance if , the true conditional probabilities

1

Better supervisory signal implies better learningBetter supervisory signal implies better learning

Classification: target is

Normally: see , minimize (is vector of losses for all possible labels)

Potentially better scheme: see , minimize

Can reduce variance if , the true conditional probabilities

1

Knowledge distillationKnowledge distillation

Process:

Train a teacher on with standard ERM,

Train a student on with

Usually is “smaller” than

1

Knowledge distillationKnowledge distillation

Process:

Train a teacher on with standard ERM,

Train a student on with

Usually is “smaller” than

But “self-distillation” (using the same architecture), often outperforms !

1

Knowledge distillationKnowledge distillation

Process:

Train a teacher on with standard ERM,

Train a student on with

Usually is “smaller” than

But “self-distillation” (using the same architecture), often outperforms !

One possible explanation: is closer to than sampled

1

Knowledge distillationKnowledge distillation

Process:

Train a teacher on with standard ERM,

Train a student on with

Usually is “smaller” than

But “self-distillation” (using the same architecture), often outperforms !

One possible explanation: is closer to than sampled

But why would that be?

1

Zig-Zagging behaviour in learningZig-Zagging behaviour in learning

Plots of (three-way) probabilistic predictions: shows , shows

1

eNTK explains iteNTK explains it

Let ; for cross-entropy loss, one SGD step gives us

 is the covariance of a

1

eNTK explains iteNTK explains it

Let ; for cross-entropy loss, one SGD step gives us

 is the covariance of a

1

eNTK explains iteNTK explains it

Let ; for cross-entropy loss, one SGD step gives us

 is the covariance of a

Improves distillation (esp. with noisy labels) to take moving average of as

1

What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1

Fine-tuningFine-tuning

Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:

Head probing: only update the head

Fine-tuning: update head and backbone together

1

Fine-tuningFine-tuning

Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:

Head probing: only update the head

Fine-tuning: update head and backbone together

If we only fine-tune: noise from random head might break our features!

1

Fine-tuningFine-tuning

Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:

Head probing: only update the head

Fine-tuning: update head and backbone together

If we only fine-tune: noise from random head might break our features!

If we head-probe to convergence: might already fit training data and not change features!

1

Fine-tuningFine-tuning

Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:

Head probing: only update the head

Fine-tuning: update head and backbone together

If we only fine-tune: noise from random head might break our features!

If we head-probe to convergence: might already fit training data and not change features!

1

How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

1

How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

1

How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if is rich

1

How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if is rich

Specializing to simple linear-linear model, can get insights about trends in

1

How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if is rich

Specializing to simple linear-linear model, can get insights about trends in

Recommendations from paper:

Early stop during head probing (ideally, try multiple lengths for downstream task)

Label smoothing can help; so can more complex heads, but be careful

1

How good will our fine-tuned features be? How good will our fine-tuned features be? [[]]Wei/Hu/Steinhardt 2022Wei/Hu/Steinhardt 2022

1

https://arxiv.org/abs/2203.06176

What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1

Pool-based active learningPool-based active learning

1

Pool-based active learningPool-based active learning

1

Pool-based active learningPool-based active learning

1

Pool-based active learningPool-based active learning

1

Pool-based active learningPool-based active learning

1

Approximate retraining with local linearizationApproximate retraining with local linearization

Given trained on labeled data , approximate with local linearization

1

Approximate retraining with local linearizationApproximate retraining with local linearization

Given trained on labeled data , approximate with local linearization

1

Approximate retraining with local linearizationApproximate retraining with local linearization

Given trained on labeled data , approximate with local linearization

Rank-one updates for efficient computation: schema

1

Approximate retraining with local linearizationApproximate retraining with local linearization

Given trained on labeled data , approximate with local linearization

Rank-one updates for efficient computation: schema

We prove this is exact for infinitely wide networks

 agrees with direct

1

Approximate retraining with local linearizationApproximate retraining with local linearization

Given trained on labeled data , approximate with local linearization

Rank-one updates for efficient computation: schema

We prove this is exact for infinitely wide networks

 agrees with direct

Local approximation with eNTK “should” work much more broadly than “NTK regime”

1

Much faster than SGDMuch faster than SGD

1

Much more effective than infinite NTK and one-step SGDMuch more effective than infinite NTK and one-step SGD

1

Matches/beats state of the artMatches/beats state of the art

Downside: usually more computationally expensive (especially memory)
1

Enables new interaction modesEnables new interaction modes

1

What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With classes, – potentially very big

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With classes, – potentially very big

But actually, we know that is diagonal for most architectures

Let

. (no !)

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With classes, – potentially very big

But actually, we know that is diagonal for most architectures

Let

. (no !)

Can also use “sum of logits” instead of just “first logit”

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With classes, – potentially very big

But actually, we know that is diagonal for most architectures

Let

. (no !)

Can also use “sum of logits” instead of just “first logit”

Lots of work (including above) has used instead of

Often without saying anything; sometimes doesn't seem like they know they're doing it

1

Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With classes, – potentially very big

But actually, we know that is diagonal for most architectures

Let

. (no !)

Can also use “sum of logits” instead of just “first logit”

Lots of work (including above) has used instead of

Often without saying anything; sometimes doesn't seem like they know they're doing it

Can we justify this more rigorously?

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

We want to bound difference

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

We want to bound difference

Want and to be close, and small, for random and fixed

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

We want to bound difference

Want and to be close, and small, for random and fixed

Using Hanson-Wright:

1

pNTK motivationpNTK motivation

Say , , and has rows with iid entries

If , then and have same distribution

We want to bound difference

Want and to be close, and small, for random and fixed

Using Hanson-Wright:

Fully-connected ReLU nets at init., fan-in mode: numerator , denom

1

pNTK's Frobenius errorpNTK's Frobenius error

1

pNTK's Frobenius errorpNTK's Frobenius error

Same kind of theorem / empirical results for largest eigenvalue,

and empirical results for , condition number

1

Kernel regression with pNTKKernel regression with pNTK

Reshape things to handle prediction appropriately:

We have again

If we add regularization, need to “scale” between the two

1

Kernel regression with pNTKKernel regression with pNTK

1

pNTK speed-uppNTK speed-up

1

pNTK speed-up on active learning taskpNTK speed-up on active learning task

1

pNTK for full CIFAR-10 regressionpNTK for full CIFAR-10 regression

 on CIFAR-10: 1.8 terabytes of memory

 on CIFAR-10: 18 gigabytes of memory

1

pNTK for full CIFAR-10 regressionpNTK for full CIFAR-10 regression

 on CIFAR-10: 1.8 terabytes of memory

 on CIFAR-10: 18 gigabytes of memory

Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

1

pNTK for full CIFAR-10 regressionpNTK for full CIFAR-10 regression

 on CIFAR-10: 1.8 terabytes of memory

 on CIFAR-10: 18 gigabytes of memory

Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

Way worse than SGD

1

RecapRecap

eNTK is a good tool for intuitive understanding of the learning process

Ren, Guo, S.

Ren, Guo, Bae, S.

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S.

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S.

Better Supervisory Signals by Observing Learning Paths

How to prepare your task head for finetuning

Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel

1

https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543

