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One path to NTKsOne path to NTKs (Taylor's version)(Taylor's version)

“Learning path” of a model's predictions:  for some fixed  as params  change

Let's start with “plain” SGD on :

Defined 

 step barely changes  prediction if  is small

 for square loss,  for cross-entropy
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Full-batch GD: “stacking things up”,

Observation I: If  is “wide enough” with any usual architecture+init* [ ],

 is roughly constant through training

For square loss, : dynamics agree with kernel regression!

Observation II: As  becomes “infinitely wide” with any usual architecture+init* [ ],

, independent of the random 

Yang+Litwin 2021

Yang 2019
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Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets  understanding NTK norm of functions

Can compute  exactly for many architectures

A great kernel for many kernel methods!

Using in SVMs was then-best overall method across many small-data tasks [ ]

Good results in statistical testing [ ], dataset distillation [ ],

clustering for active learning batch queries [ ], …

github.com/google/neural-tangents

Arora+ 2020

Jia+ 2021 Nguyen+ 2021

Holzmüller+ 2022
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But (infinite) NTKs aren't “the answer”But (infinite) NTKs aren't “the answer”

Computational expense:

Poor scaling for large-data problems: typically  memory and  to  computation

CIFAR-10 has , : an  matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

Practical performance:

Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

Theoretical limitations:

NTK “doesn't do feature learning”:

 stays  constant

Internal activations in the networks don't change much [ ] [ ]

We now know many problems where gradient descent on an NN any kernel method

Cases where GD error , any kernel is barely better than random [ ]

Chizat+ 2019 Yang/Hu 2021

Malach+ 2021
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Knowledge distillationKnowledge distillation

Process:

Train a teacher  on  with standard ERM, 

Train a student on  with 

Usually  is “smaller” than 

But “self-distillation” (using the same architecture), often  outperforms !

One possible explanation:  is closer to  than sampled 

But why would that be?
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Zig-Zagging behaviour in learningZig-Zagging behaviour in learning

Plots of (three-way) probabilistic predictions:  shows ,  shows 
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eNTK explains iteNTK explains it

Let ; for cross-entropy loss, one SGD step gives us

 is the covariance of a 

Improves distillation (esp. with noisy labels) to take moving average of  as 
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How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if  is rich

Specializing to simple linear-linear model, can get insights about trends in 

Recommendations from paper:

Early stop during head probing (ideally, try multiple lengths for downstream task)

Label smoothing can help; so can more complex heads, but be careful
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How good will our fine-tuned features be? How good will our fine-tuned features be? [[ ]]Wei/Hu/Steinhardt 2022Wei/Hu/Steinhardt 2022

1

https://arxiv.org/abs/2203.06176


What can we learn from empirical NTKs?What can we learn from empirical NTKs?

In this talk:

As a theoretical-ish tool for local understanding:

Fine-grained explanation for early stopping in knowledge distillation

How you should fine-tune models

As a practical tool for approximating “lookahead” in active learning

Plus: efficiently approximating s for large output dimensions , with guarantees

1



Pool-based active learningPool-based active learning

1



Pool-based active learningPool-based active learning

1



Pool-based active learningPool-based active learning

1



Pool-based active learningPool-based active learning

1



Pool-based active learningPool-based active learning

1



Approximate retraining with local linearizationApproximate retraining with local linearization

Given  trained on labeled data , approximate  with local linearization

1



Approximate retraining with local linearizationApproximate retraining with local linearization

Given  trained on labeled data , approximate  with local linearization

1



Approximate retraining with local linearizationApproximate retraining with local linearization

Given  trained on labeled data , approximate  with local linearization

Rank-one updates for efficient computation: schema 

1



Approximate retraining with local linearizationApproximate retraining with local linearization

Given  trained on labeled data , approximate  with local linearization

Rank-one updates for efficient computation: schema 

We prove this is exact for infinitely wide networks

 agrees with direct 

1



Approximate retraining with local linearizationApproximate retraining with local linearization

Given  trained on labeled data , approximate  with local linearization

Rank-one updates for efficient computation: schema 

We prove this is exact for infinitely wide networks

 agrees with direct 

Local approximation with eNTK “should” work much more broadly than “NTK regime”
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Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With  classes,  – potentially very big

But actually, we know that  is diagonal for most architectures

Let 

.        (no !)

Can also use “sum of logits”  instead of just “first logit” 

Lots of work (including above) has used  instead of 

Often without saying anything; sometimes doesn't seem like they know they're doing it

Can we justify this more rigorously?
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pNTK motivationpNTK motivation

Say , , and  has rows  with iid entries

If , then  and  have same distribution

We want to bound difference 

Want  and  to be close, and  small, for random  and fixed 

Using Hanson-Wright: 

Fully-connected ReLU nets at init., fan-in mode: numerator , denom 
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pNTK's Frobenius errorpNTK's Frobenius error

Same kind of theorem / empirical results for largest eigenvalue,

and empirical results for , condition number
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Kernel regression with pNTKKernel regression with pNTK

Reshape things to handle prediction appropriately:

We have  again

If we add regularization, need to “scale”  between the two
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pNTK for full CIFAR-10 regressionpNTK for full CIFAR-10 regression

 on CIFAR-10: 1.8 terabytes of memory

 on CIFAR-10: 18 gigabytes of memory

Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

Way worse than SGD
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RecapRecap

eNTK is a good tool for intuitive understanding of the learning process

Ren, Guo, S.

Ren, Guo, Bae, S.

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S.

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S.

Better Supervisory Signals by Observing Learning Paths

How to prepare your task head for finetuning

Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel
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