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Language models (e.g. GPT-2)

Scrape up a ton of the internet (usually illegally)

Train a big Transformer for next-token prediction

Super-useful as component of lots of things…but not necessarily what we want itself

Turning a language model into a chatbot (e.g. ChatGPT):

Run “supervised fine-tuning” on a dataset of chatbot-like interactions

Run “preference optimization”: given prompt x, say A, not B
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Preference optimization: “given prompt , say , not ”

Common algorithm: Direct Preference Optimization [ ]

Weird things can happen here!

Even in the best case, “too much” DPO hurts [ ]

Makes  way less likely, but eventually, model almost always says some 

There are some workarounds, but…why?

RSM+ NeurIPS-23

RHPF CoLM-24
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Learning dynamicsLearning dynamics

Most theoretical analyses in this area ask: what do optimal solutions look like?

Turns out the loss function is very underspecified; there are many optimal solutions

“Implicit regularization” studies which one GD/SGD/Adam/… eventually converges to

“Eventually” can take a really long time

We'll take a related, but more qualitative approach

What does each step do to the model?

Mapping from parameters to “what the model does” is complicated

When I take an SGD step to “learn” ,

what happens to my predictions on ?

Also been called “local elasticity” [ ]HS ICLR-20
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“Learning dynamics” of a model:  for some fixed  as params  change

To start: , , “plain” SGD on :

: how much do I need to change my  prediction?

For square loss with , : how wrong was I before?

For cross-entropy on logits, : how wrong was I before?

 just “converts” prediction changes

If ,  is the identity; if , 

 is empirical neural tangent kernel of 

If ,  are “dissimilar” (small eNTK), stepping on  barely changes  prediction

If ,  are “similar” (large eNTK), makes  prediction more like 
1
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Full-batch GD: “stacking things up”,

Observation I: If  is “wide enough” with any usual architecture+init* [ ],

 is roughly constant through training

For square loss, : dynamics agree with kernel regression!

Observation II: As  becomes “infinitely wide” with any usual architecture+init* [ ],

, independent of the random 

Yang+Litwin 2021

Yang 2019

1

https://arxiv.org/abs/2105.03703
https://arxiv.org/abs/1910.12478


Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

1



Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets  understanding NTK norm of functions

1



Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets  understanding NTK norm of functions

Can compute  exactly for many architectures

github.com/google/neural-tangents

1

https://github.com/google/neural-tangents


Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets  understanding NTK norm of functions

Can compute  exactly for many architectures

A great kernel for many kernel methods!

Using in SVMs was then-best overall method across many small-data tasks [ ]

github.com/google/neural-tangents

Arora+ 2020

1

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663


Infinite NTKs are greatInfinite NTKs are great

Infinitely-wide neural networks have very simple behaviour!

No need to worry about bad local minima, optimization complications, …

Understanding “implicit bias” of wide nets  understanding NTK norm of functions

Can compute  exactly for many architectures

A great kernel for many kernel methods!

Using in SVMs was then-best overall method across many small-data tasks [ ]

Good results in statistical testing [ ], dataset distillation [ ],

clustering for active learning batch queries [ ], …

github.com/google/neural-tangents

Arora+ 2020

Jia+ 2021 Nguyen+ 2021

Holzmüller+ 2022
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Computational expense:

Poor scaling for large-data problems: typically  memory and  to  computation

CIFAR-10 has , : an  matrix of float64s is 2 terabytes!

ILSVRC2012 has , : 11.5 million terabytes (exabytes)

For deep/complex models (especially CNNs), each pair very slow / memory-intensive

Attention is even harder to handle

Practical performance:

Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

Theoretical limitations:

NTK “doesn't do feature learning”:

, activations in the net don't change much [ ] [ ]

We now know many problems where gradient descent on an NN any kernel method

Cases where GD error , any kernel is barely better than random [ ]

Chizat+ 2019 Yang/Hu 2021

Malach+ 2021
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Adapting to the LLM settingAdapting to the LLM setting

First problem: we don't classify a full response at a time, we do it token-by-token

Once we've framed it correctly, this is fine: stack prompt+response into 

Change in  based on token-by-token update of  is

Second problem: we can't check all possible output probabilities anymore

Workaround: track some informative possible responses

The dataset responses, rephrases, similar strings with different meanings

Irrelevant responses in training set, random sentences…
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LLM supervised fine-tuningLLM supervised fine-tuning

SFT makes dispreferred answers more likely

…because they're “similar enough” to the preferred ones

 is reasonably large;  starts big (pulls up), gets small (pulls up less)

Ungrammatical responses just go down;  is small, so no upwards pressure

Also makes answers to different questions more likely…one form of hallucination?
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which gives that  is about

This negative gradient can do really weird things:
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Group Relative Policy Optimization (GRPO) Group Relative Policy Optimization (GRPO) [[ ]]

Similar to a “group-wise” version of DPO; negative gradients have similar effect!

DeepSeekMath 24DeepSeekMath 24
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Knowledge distillationKnowledge distillation

Process:

Train a teacher  on  with standard ERM, 

Train a student on  with 

Usually  is “smaller” than 

But “self-distillation” (using the same architecture), often  outperforms !

One possible explanation:  is closer to  than sampled 

But why would that be?
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Let ; for cross-entropy loss, one SGD step gives us

 is the covariance of a 

Improves distillation (esp. with noisy labels) to take moving average of  as 
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How much do we change our features?How much do we change our features?

Same kind of decomposition with backbone features , head :

If initial “energy”, e.g. , is small, features don't change much

If we didn't do any head probing, “direction” is very random, especially if  is rich

Specializing to simple linear-linear model, can get insights about trends in 

Recommendations from paper:

Early stop during head probing (ideally, try multiple lengths for downstream task)

Label smoothing can help; so can more complex heads, but be careful
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How good will our fine-tuned features be? How good will our fine-tuned features be? [[ ]]Wei/Hu/Steinhardt 2022Wei/Hu/Steinhardt 2022
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Given  trained on labeled data , approximate  with local linearization

Rank-one updates for efficient computation: schema 

We prove this is exact for infinitely wide networks

 agrees with direct 

Local approximation with eNTK “should” work much more broadly than “NTK regime”
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Matches/beats state of the artMatches/beats state of the art

Downside: usually more computationally expensive (especially memory)
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Approximating empirical NTKsApproximating empirical NTKs

I hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results…

With  classes,  – potentially very big

But actually, we know that  is diagonal for most architectures

Let 

.        (no !)

Can also use “sum of logits”  instead of just “first logit” 

Lots of work (including above) has used  instead of 

Often without saying anything; sometimes doesn't seem like they know they're doing it

Can we justify this more rigorously?
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pNTK motivationpNTK motivation

Say , , and  has rows  with iid entries

If , then  and  have same distribution

We want to bound difference 

Want  and  to be close, and  small, for random  and fixed 

Using Hanson-Wright: 

Fully-connected ReLU nets at init., fan-in mode: numerator , denom 
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pNTK's Frobenius errorpNTK's Frobenius error

Same kind of theorem / empirical results for largest eigenvalue,

and empirical results for , condition number
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Kernel regression with pNTKKernel regression with pNTK

Reshape things to handle prediction appropriately:

We have  again

If we add regularization, need to “scale”  between the two
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pNTK for full CIFAR-10 regressionpNTK for full CIFAR-10 regression

 on CIFAR-10: 1.8 terabytes of memory

 on CIFAR-10: 18 gigabytes of memory

Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

Way worse than SGD
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RecapRecap

eNTK is a good tool for intuitive understanding of the learning process

Ren, Guo, S.

Ren, Guo, Bae, S.

Ren, S.

Deng, Ren, M. Li, S., X. Li, Thrampoulidis

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S.

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S.

Better Supervisory Signals by Observing Learning Paths

How to prepare your task head for finetuning

Learning dynamics of LLM Finetuning

On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization

Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel
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https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543



