Local Learning Dynamics
Help Explain (Post-)Training Behaviour

Danica J. Sutherland
University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

GRPO analysis+fix

Knowl. dist. analysis Finetuning analysis Active learning Pseudo-NTK DPO/etc analysis [arXiv]
[ICLR-22] [ICLR-23] [NeurlPS-22] [ICML-23] [ICLR-25] et g 15,
Updatei3696 A ZT:ZO Cifar-10 :
. cos(Zy, Zo) ule e O e VD Cassedby 3l e
i C - 112! 1T w+—r——r—+ 1 ST\ squeezingefrect @000 0o | roooooeeeeoo
S A =il 11 N YO I Y| AN RS o e |
i i i \ z, — Zoll2 [£ ¥ | | T N TK WWWWWWWW (ikelin)
e R ResNetdep th Wenlong Deng
Yi Ren YiRen M. Amin Mohamadi M. Amin Mohamadi Yi Ren YiRen
Shangmin Guo Shangmin Guo Wonho Bae Wonho Bae Muchen Li
Wonho Bae Xiaoxiao Li

Christos Thrampoulidis

HTML version

https://djsutherland.ml/
https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://fsmlims.wixsite.com/fsml25
https://djsutherland.ml/slides/entk-fsml/

Local Learning Dynamics
Help Explain (Post-)Training Behaviour

Danica J. Sutherland
University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

DPO/etc analysis
[ICLR-25]

HTML version

https://djsutherland.ml/
https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://fsmlims.wixsite.com/fsml25
https://djsutherland.ml/slides/entk-fsml/

Local Learning Dynamics
Help Explain (Post-)Training Behaviour

Danica J. Sutherland
University of British Columbia (UBC) / Alberta Machine Intelligence Institute (Amii)

DPO/etc analysis
[ICLR-25]

Yi (Joshua) Ren

HTML version

https://djsutherland.ml/
https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://fsmlims.wixsite.com/fsml25
https://djsutherland.ml/slides/entk-fsml/

LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction

https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction

= Super-useful as component of lots of things

https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction

= Super-useful as component of lots of things...but not necessarily what we want itself

https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction

= Super-useful as component of lots of things...but not necessarily what we want itself

< 0 r/learnprogramming - 7 yr. ago

RobotWizardz

Why on people on stack overflow so rude?

Honestly everytime | go to ask a question I'm scared that I'll be met with an overwhelming amount
of negatives and comments telling me my questions are stupid it seems very hostile / scary. I'm

https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction

= Super-useful as component of lots of things...but not necessarily what we want itself

< 0 r/learnprogramming - 7 yr. ago

RobotWizardz

Why on people on stack overflow so rude?

Honestly everytime | go to ask a question I'm scared that I'll be met with an overwhelming amount
of negatives and comments telling me my questions are stupid it seems very hostile / scary. I'm

e Turning a language model into a chatbot (e.g. ChatGPT):
= Run “supervised fine-tuning” on a dataset of chatbot-like interactions

= Run “preference optimization”: given prompt x, say A, not B

https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

Surprises in LLM post-training

e Preference optimization: “given prompt x, say 4, not B”

e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]

https://arxiv.org/abs/2305.18290

Surprises in LLM post-training

e Preference optimization: “given prompt x, say A4, not B”
e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]

e Weird things can happen here!

https://arxiv.org/abs/2305.18290

Surprises in LLM post-training

e Preference optimization: “given prompt x, say A4, not B”
e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]

e Weird things can happen here!

TLDR DPO (B=0.1) implicit reward evolution, no SFT vs. SFT

..
0.25 .
BN [
000] | -
Y.
v e,
P -0.254
]
=
e
£ -050
= ¥.
£ i ¥
-0.75 B A L
v e 3 ST
—-1.001 ¥ Chosen rewards, SFT — Y
¥ Rejected rewards, SFT W
M- Chosenrewards, noSFT T i ST B
-1.251 Rejected rewards, no SFT R, 4
0.0 02 04 06 0.8 10

DPO epoch fraction

e Even in the best case, “too much” DPO hurts [RHPF ColLM-24]

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2404.12358

Surprises in LLM post-training

e Preference optimization: “given prompt x, say A4, not B”

e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]

e Weird things can happen here!

TLDR DPO (B=0.1) implicit reward evolution, no SFT vs. SFT

..
0.25 .
BN [
T Y I Rty IR |
000] | .
Y.
v e,
P -0.254
]
=
I
£ -050
= ¥.
£ i ¥
—-0.754 Yoo,
v e 3 ST
—-1.001 ¥ Chosen rewards, SFT — Y
¥ Rejected rewards, SFT W
~M- Chosenrewards,nosfFT T B AL, .
-1.251 Rejected rewards, no SFT R, 4
0.0 02 04 06 0.8 10

DPO epoch fraction

e Even in the best case, “too much” DPO hurts [RHPF ColLM-24]

e Makes B way less likely, but eventually, model almost always says some C

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2404.12358

Surprises in LLM post-training

e Preference optimization: “given prompt x, say A4, not B”

e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]

e Weird things can happen here!

TLDR DPO (B=0.1) implicit reward evolution, no SFT vs. SFT

..
0.25 .
BN [
T Y I Rty IR |
000] | .
Y.
v e,
P -0.254
]
=
I
£ -050
= ¥.
£ i ¥
—-0.754 Yoo,
v e 3 ST
—-1.001 ¥ Chosen rewards, SFT — Y
¥ Rejected rewards, SFT W
~M- Chosenrewards,nosfFT T B AL, .
-1.251 Rejected rewards, no SFT R, 4
0.0 02 04 06 0.8 10

DPO epoch fraction

e Even in the best case, “too much” DPO hurts [RHPF CoLM-24]
e Makes B way less likely, but eventually, model almost always says some C

e There are some workarounds, but...why?

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2404.12358

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?

= Turns out the loss function is very underspecified; there are many optimal solutions

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

e \What does each step do to the model?

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

e \What does each step do to the model?
= Mapping from parameters to “what the model does” is complicated

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

e \What does each step do to the model?
= Mapping from parameters to “what the model does” is complicated

= When | take an SGD step to “learn” f(z;) =~ vy,
what happens to my predictions on ?

Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

e \What does each step do to the model?
= Mapping from parameters to “what the model does” is complicated

= When | take an SGD step to “learn” f(z;) = v;,

what happens to my predictions on ?
o Closely related to “local elasticity” [HS ICLR-20]

https://arxiv.org/abs/1910.06943

Learning dynamics

e “Learning dynamics” of a model: f; (%) for some fixed = as params w; change

Learning dynamics

e “Learning dynamics” of a model: f; (%) for some fixed = as params w; change

e Suppose z = z(x), f = o(z), “plain” SGD on % 27],11 Li(x;,v;):

Lea rning dyna mics (Taylor's version)
e “Learning dynamics” of a model: f; (%) for some fixed 7 as params w; change

e Suppose z = z(x), f = o(z), “plain” SGD on % 27],11 Li(x;,v;):

£11(2) — £(2) = (V£ (@)lw) (W1 — W) + O [wier — wi)
H/—/ v (. ~ AN ~ _y
kx1 kx1 kxp px1

Lea rning dyna MICS (Taylor's version)
e “Learning dynamics” of a model: f; (%) for some fixed 7 as params w; change

e Suppose z = z(x), f = o(z), “plain” SGD on % 27],11 Li(x;,v;):

£11(2) = £(2) = (Vaf(@)lw,) (Wers = we) + O | wips —wi*)
N—— N~ \ ~- 7 S ~ o

kx1 kx1 kxp px1
-
= (Vuf(@lw,) (1w £,y)+ O
k‘xrp 1‘er

Lea rning dyna mics (Taylor's version)
e “Learning dynamics” of a model: f; (%) for some fixed 7 as params w; change

e Suppose z = z(x), f = o(z), “plain” SGD on % 27],11 Li(x;,v;):

£11(2) — £(2) = (V£ (@)lw) (W1 — W) + O [wier — wi)
N—_—— = \ ~ AN ~ v

kx1 kx1 kxp px1
T 2
— vaf()|wt2(_n\vw£(wi7yi)|wtj) + 0(’)7)
k‘xrp 1‘er
= —n (sz()|z)(|Wt) wz L ‘Wt) szﬁ(wiay’i”zt)1; + 0(772)

v v

kxk k><p pxk kx1

Lea rning dyna MICS (Taylor's version)
e “Learning dynamics” of a model: f; (%) for some fixed 7 as params w; change

e Suppose z = z(x), f = o(z), “plain” SGD on % 27],11 Li(x;,v;):

£11(2) = £(2) = (Vaf(@)lw,) (Wers = we) + O | wips —wi*)
N—— N~ \ ~- 7 S ~ o

kx1 kx1 kxp px1
i T 2
_ vaf($)|wt2(_nYw£(wiayz')|WtJ) +O(n°)
k‘xrp 1‘er
—1 (Vaf(7)lz) (Vw |Wt) Vaz(2)w,)' SVzﬁ(wz‘,yiNzt)Tj +O(n°)
kxk kxp pxk ko
— A3 Ko (i, ;) Gi(ziryi) +O(n°)

Learning dynamics

e “Learning dynamics” of a model: f; () for some fixed = as params w; change

e Tostart: z = hg(x), f = o(z), “plain” SGD on % S Lo (2, 1)

fi1(2) —£(2) = —n A (2) Ki (2, x;) gt(wiayi)‘|‘0(772)

Learning dynamics

e “Learning dynamics” of a model: f; () for some fixed = as params w; change

e Tostart: z = hg(x), f = o(z), “plain” SGD on % S Lo (2, 1)

fi1(2) —£(2) = —n A (2) Ki (2, x;) gt(wiayi)‘|‘0(772)

* Gi(z;,v;) = Vo L(xi,Y;)|s: how much do | need to change my x; prediction?
= For square loss with 0(z) = 2, G; = f;(x;) — y;: how wrong was | before?

= For cross-entropy on logits, G¢ = Softmax(z;(x;)),, — e, : how wrongwas | before?

Learning dynamics

e “Learning dynamics” of a model: f; () for some fixed = as params w; change

e Tostart: z = hg(x), f = o(z), “plain” SGD on % S Lo (2, 1)

fi1(2) —£(2) = —n A (2) Ki (2, x;) gt(wiayi)‘|‘0(772)

* Gi(z;,v;) = Vo L(xi,Y;)|s: how much do | need to change my x; prediction?
= For square loss with 0(z) = 2, G; = f;(x;) — y;: how wrong was | before?

= For cross-entropy on logits, G¢ = Softmax(z;(x;)),, — e, : how wrongwas | before?

e A;(%) = V,0(2) just “converts” prediction changes
= If 0(z) = z, A is the identity; if o = log Softmax, A; = I — 15 m; ()T

Learning dynamics

e “Learning dynamics” of a model: f; () for some fixed = as params w; change

e Tostart: z = hg(x), f = o(z), “plain” SGD on % S Lo (2, 1)

fi1(2) — £(2) = —n A(2) Ke(Z,23) Ge(wi,v5) + O(n°)

* Gi(z;,v;) = Vo L(xi,Y;)|s: how much do | need to change my x; prediction?
= For square loss with 0(z) = 2, G; = f;(x;) — y;: how wrong was | before?

= For cross-entropy on logits, G¢ = Softmax(z;(x;)),, — e, : how wrongwas | before?

o A;(Z) = V,0(2z;) just “converts” prediction changes
= If 0(z) = z, A is the identity; if o = log Softmax, A; = I — 15 m; ()T

o Ki(Z,7;) = (Vwz(2)|w,)(Vwz(z:)|w,)" is k x kempirical neural tangent kernel of z

Learning dynamics

e “Learning dynamics” of a model: f; () for some fixed = as params w; change

e Tostart: z = hg(x), f = o(z), “plain” SGD on % S Lo (2, 1)

fi1(2) —£(2) = —n A (2) Ki (2, x;) gt(wiayi)‘|‘0(772)

* Gi(z;,v;) = Vo L(xi,Y;)|s: how much do | need to change my x; prediction?
= For square loss with 0(z) = 2, G; = f;(x;) — y;: how wrong was | before?

= For cross-entropy on logits, G¢ = Softmax(z;(x;)),, — e, : how wrongwas | before?

e A;(%) = V,0(2) just “converts” prediction changes
= If 0(z) = z, A is the identity; if o = log Softmax, A; = I — 15 m; ()T

o Ki(Z,7;) = (Vwz(2)|w,)(Vwz(z:)|w,)" is k x kempirical neural tangent kernel of z
m |f x;, x are “dissimilar” (small eNTK), stepping on (a:z-, yz-) barely changes x prediction

m |fz;, x are“similar” (large eNTK), makes « prediction more like y;

1.0

0.8

0.6 4

Example: learning dynamics on MNIST

10g7Tt+1()—logﬂt()%—77«415(),Ct(,lez‘)gt(fvz‘ayi)

After Identical:
Before Y= T.','(XO =

H8£+1(XU)

4

1.0

0.8 1

0.6 4

0.4 4

0.2 1

Example: learning dynamics on MNIST

10g7Tt+1()—logﬂt()%—77«415(),Ct(,lez‘)gt(fvz‘ayi)

After Identical:
Before Y= T.','(XO =

H8£+1(XU)

4

1.0

0.8

0.6 4

0.4+

0.2 4

Similar:
y = (X,

1)

1.0

0.8 1

0.6 4

0.4 4

0.2 1

Example: learning dynamics on MNIST

10g7Tt+1()—logﬂt()%—77«415(),Ct(,flfz‘)gt(wz‘ayi)

After Identical:
Before y= TI'(XO = L’)
H8£+1(XU)
1 2 3 4 5 [7 8

1.0

0.8

0.6 4

0.4+

0.2 4

1)

1.0

0.8

0.6

0.44

0.2

Dissimilar:
y=mn(x, =0)

Similar:
y = (X,
¥

1.0

0.8 1

0.6 4

0.4 4

0.2 1

Example: learning dynamics on MNIST

log Tt+1 (53) — log Ly’ (.’f) ~ —’I’].At (fé) ’Ct (i, CBZ) gt (CIZZ', yz')

After Identical:
Before Y= Tf(xo = q
?1'8£+1(X0)
1 2 3 4 5 [7 8

1.0

0.8

0.6 4

0.4+

0.2 4

Similar:

y = (X,

1.0

0.8

0.6

0.44

0.2

Dissimilar:

y=n(x=0)

\ \ 4
0 1 2 3 4 5 A 7
Predicting probability
0.2 0.4 0.6 0.8

Observing class
B

=2}

(o]

Updating class

But wait...aren't NTKs an unrealistic approximation?

But wait...aren't NTKs an unrealistic approximation?

s
&

Ben Recht @beenwrekt - Jan 19
Replying to @KameronDHarris and @deepcohen

This! | spent a lot of time digging into NTKs, and I'm still not sure the math
tells us much.

Q 2 0 Q 2 ih 811 2

Lorenzo Rosasco @lrntzrsc - Jan 19
Replying to @beenwrekt @KameronDHarris and @deepcohen
| am more pessimistic than this, | am not sure NTKs say much at all.

Q 3 0 Q 5 i 638 I

But wait...aren't NTKs an unrealistic approximation?

; Ben Recht @beenwrekt - Jan 19
W Replying to @KameronDHarris and @deepcohen
This! | spent a lot of time digging into NTKs, and I'm still not sure the math
tells us much.

Q 2 0 Q 2 ih 811 2

Lorenzo Rosasco @lrntzrsc - Jan 19
Replying to @beenwrekt @KameronDHarris and @deepcohen
| am more pessimistic than this, | am not sure NTKs say much at all.

Q 3 0 Q 5 i 638 I

A quick aside: the “NTK regime” and infinite limits

e Full-batch GD:

Fer () = () = =55 D AE) Kel,20)Ge (i) + OC7)

e Full-batch GD: “stacking things up”,

ft—l—l (53) — ,ft (53‘) T fﬁ ICt (33 wz)gt (wzay’&) + O()

e Full-batch GD: “stacking things up”,

finn(5) = £u(3) = =5 D A(@) Ki(3,20)Gi (i, 35) + O(7)

1=1

= — L A(2) (5, X) Gi(X, y) + O7)
N N e’
kxk kxkN kN x1

e Observation I: If fis “wide enough” with any usual architecture+init* [Yang+Litwin 2021],
IC: (-, X)) is roughly constant through training

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

finn(5) = £u(3) = =5 D A(@) Ki(3,20)Gi (i, 35) + O(7)

1=1

= — L A(2) (5, X) Gi(X, y) + O7)
N N e’
kxk kxkN kN x1

e Observation I: If fis “wide enough” with any usual architecture+init* [Yang+Litwin 2021],
IC: (-, X)) is roughly constant through training
= For square loss, L(X,y) = f:(X) — y: dynamics agree with kernel regression!

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

finn(5) = £u(3) = =5 D A(@) Ki(3,20)Gi (i, 35) + O(7)

1=1

= — L A(2) (5, X) Gi(X, y) + O7)
N N e’
kxk kxkN kN x1

e Observation I: If fis “wide enough” with any usual architecture+init* [Yang+Litwin 2021],
IC: (-, X)) is roughly constant through training
= For square loss, L(X,y) = f:(X) — y: dynamics agree with kernel regression!

t—00

= fo(2) — Ko (2, X) Ko (X, X) (v — fo(X)) + fo(2)

https://arxiv.org/abs/2105.03703

e Full-batch GD: “stacking things up”,

2

ft—l—l (flé) — ft(i) — 5{3 Kt(CIZ' wz)gt(wzay’&) + O()

S 2|3

=- t(v%) Ki(%,X) G(X,y) + O(1°)
S—— — —
kxk kxkN kN x1
e Observation I: If fis “wide enough” with any usual architecture+init* [Yang+Litwin 2021],
IC: (-, X)) is roughly constant through training
= For square loss, L(X,y) = f:(X) — y: dynamics agree with kernel regression!

t—00

= fo(2) — Ko (2, X) Ko (X, X) (v — fo(X)) + fo(2)

e Observation Il: As f becomes “infinitely wide” with any usual architecture+init* [Yang 2019],
a.s.
Ko(z1,z2) —> NTK(x1, z2), independent of the random wy

https://arxiv.org/abs/2105.03703
https://arxiv.org/abs/1910.12478

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m github.com/google/neural-tangents

https://github.com/google/neural-tangents

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m github.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663

Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m github.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

= Good results in statistical testing [Jia+ 2021], dataset distillation [Nguyen+ 2021],
clustering for active learning batch queries [Holzmdller+ 2022], ...

https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663
https://proceedings.mlr.press/v139/jia21a.html
https://arxiv.org/abs/2107.13034
https://arxiv.org/abs/2203.09410

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

3

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive

s Attention is even harder to handle

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive
= Attention is even harder to handle

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive
= Attention is even harder to handle

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o JC, activations in the net don't change much [Chizat+ 2019] [Yang/Hu 2021]

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive
= Attention is even harder to handle

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o JC, activations in the net don't change much [Chizat+ 2019] [Yang/Hu 2021]

= We now know many problems where gradient descent on an NN > any kernel method
o Cases where GD error — 0, any kernel is barely better than random [Malach+ 2021]

https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2103.01210

What can we learn from empirical NTKs?

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= \Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token

Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token

e Once we've framed it correctly, this is fine: stack prompt+response into y; = [a:i, yi]

Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token

e Once we've framed it correctly, this is fine: stack prompt+response into y; = [:ci, yi]

e Changeinlogn(%,, | Z,7.,,_1) based on token-by-token update of x;, y; is

Alog (7 Zn A () e (s Xt G ()]s + O72)

Adapting to the LLM setting

First problem: we don't classify a full response at a time, we do it token-by-token

Once we've framed it correctly, this is fine: stack prompt+response into y; = [:ci, yi]

Change inlog 7 (%,, | %, 7., 1) based on token-by-token update of x;, y; is

[Alogm (7 | Z AL ()] [Ce (7, X)] [Ge (i)t + Ol

Second problem: we can't check all possible output probabilities anymore

)

Adapting to the LLM setting

First problem: we don't classify a full response at a time, we do it token-by-token

Once we've framed it correctly, this is fine: stack prompt+response into y; = [a:i, yi]

| ©,17.,. 1) based on token-by-token update of x;, y; is

Change in log 7(

Alogm (7 | Dl = — S 1A [t (5 x0) G)+ O7)
=1

Second problem: we can't check all possible output probabilities anymore

Workaround: track some informative possible responses
= The dataset responses, rephrases, similar strings with different meanings

= [rrelevant responses in training set, random sentences...

LLM supervised fine-tuning

e SFT makes dispreferred answers more likely

LLM supervised fine-tuning

e SFT makes dispreferred answers more likely

e ..because they're “similar enough” to the preferred ones

o ICisreasonably large; G starts big (pulls up), gets small (pulls up less)

Chosen v.s. rejected

=100 4

>
=
0 -120-
m
0
o
Q. -140
oOn
o
U _1560-
+ +
JR—— = +
.& | Yu Ytest
-1801 +
ngts Yhum

o 1 2 3 4 5 6
Number of epochs

LLM supervised fine-tuning

e SFT makes dispreferred answers more likely

e ..because they're “similar enough” to the preferred ones
o ICisreasonably large; G starts big (pulls up), gets small (pulls up less)

e Ungrammatical responses just go down; /IC is small, so no upwards pressure

Chosen v.s. rejected Non-human response
-360 |

=100 4

~370 -
~120 - ~380 -

-390

~400 -
~410 - ﬁ\

I
=3
o))
o

+

+
Yaptt

T +
i —420 1 Yurnd
N— Y vt
180 : = 430 L
—1a0 41 o —a3n 4
i ngts Yhum ymd

Averge log-probability

T T T T T T T _440 T T T T T T T
0 1 2 3 B 5 6 0 1 2 3 4 5 6
Number of epochs Number of epochs

LLM supervised fine-tuning

e SFT makes dispreferred answers more likely

e ..because they're “similar enough” to the preferred ones

o ICisreasonably large; G starts big (pulls up), gets small (pulls up less)

e Ungrammatical responses just go down; /IC is small, so no upwards pressure

e Also makes answers to different questions more likely...one form of hallucination?

=100 4

Averge log-probability

Chosen v.s. rejected

-120

~160 1 |

—-180 A

+ +
Y u Yg ptf
—_ Y -
1 Yu Ytest
+
YQMS Yhum

1 2 3 4 5 6
Number of epochs

-360

-370 4

—380 A

-390

—400 4

~410 -

-420

—-430

-440

Non-human response

\

= 1 Vde
y;-nd VM

o 1 2 3 4 5
Number of epochs

¢

-130

—140 1

-150 1

—160 1

=170 1

—-180

Whether y occured during trainin_ggu

"t —100

Lo
-~ - —110

I,‘
e /Mq - —120
{"

- —130

—140

Number of epochs

Direct Preference Optimization (DPO)

E?PO (wzayrj_ayz_) — 10g0‘ (:B

log

7Tt(yz‘+ | z;)

Trref (yz+ | z;)

log

T (y; | i)

Tref (yz— | z;)

Direct Preference Optimization (DPO)

me(y; | @))

Tref (Y; | 24) _

L0 (i, ,y;) =logo (ﬂ log

which gives that [Alog 7¢ (7 | %)]m is about

]m (Z[Kt X Xz]m [gDPO

Tt (yz | 332)

Tlref (yz | wz)

L;

=1

— log

G270 (x) = Bl —of..

’Ct X7 Xz

) (me(y | x) —ey)

20 (06)

Direct Preference Optimization (DPO)

i T X; T Z_ T; il
PP (o vt) = logor [f |log YT g T [20)
Tref (yz | CBZ) Tref (yz | mz) _

which gives that [Alog 7 (7 | %)]m isabout PP (x) = B(1 —o(...)) (m(y | x) — ey)

X)]m (Z[Kt X)] [gDPO()i — Zi[’Ct(iZ,X{)]m,l[?PO(Xz’)]l>

[=1

This negative gradient can do really weird things:

Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

e To decreaselog m((y,)m | [X;]:m), decrease numerator and increase denominator

Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

e To decreaselog m((y,)m | [X;]:m), decrease numerator and increase denominator

/TM

IYi

.
»

Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

e To decreaselog m((y,)m | [X;]:m), decrease numerator and increase denominator

i1
i1 /_\/V/\
T[[TTfTTTf i I S ST S o t 4 >

t >

57 ' I Yi

Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

e To decreaselog m((y,)m | [X;]:m), decrease numerator and increase denominator

o If z(x),~ is big, dominates the sum: increasing it is almost as effective as decreasing z(x),,

Tti1
i1 /\/V/\
T[[TTfTTTf A S T S S t ¢ >

Iyi_ BN Iyi— *¢¢'yi-'—I¢¢¢+*

Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

)m | [X;]:m), decrease numerator and increase denominator

ost as effective as decreasing z(x),,

Positive gradients cancel out...in the positive context

Squeezing effect accumulates over time

-100 4
All other responses
~150 - — .
- "“\ ""“-—‘_
-thTS“-r--ﬁh_x
—200 '
-2501 Argmax

Li Li L LI Ll L] L Li

0 1 2 3 4 5 6 7 B
Number of epochs

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \Why GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Group Relative Policy Optimization (GRPO) [DeepSeekMath 24]

e Similar to a “group-wise” version of DPO; negative gradients have similar effect!

Effect of negative gradient (Qwen-0.5B-Ins, Math) 025 <= ECt Of NOgative gradient (Despseek-1.58, AIME) Effect of negative gradient (Qwen-Math-1.58, Math)
1.0 GRPO GAPo GRPO
B Pos Only ° 0204 Pos Onty B 0.04- Pos Only
£ o8 £ £
@ V] @
= % 015 % 0.03-
- v] Negat lients ar
E‘ 0.6 1 g‘. 0104 g not miul
+ . ' + 002 - e mmmeae:
;' 0.4 1 = ? ———————————————————
. 0.05 4 - I
& E’ & 0014 1
8 02 o T '
5 5 0.00 5 '
000 } - NEANEERERERIARRERE RN N
oo - -+ A Ao oo i n i 0 i i - . i i i i m i i m m—m—m—mm—m—mm—mmmr -+t LS T
JppmTnerer g Nt nSE33RAANRE O T OO0 S N NIRRT RERRAR ANRRA RS CANMTNer®agnNN NS RRARRARINRRERRANR
Sample Orders (Sorted by Likelihood Change) Sample Orders (Sorted by Likelihood Change) Sample Orders (Sorted by Likelihood Change)
(a) Qwen-0.5B-Instruct (b) Deepseek-1.5B (c) Qwen-Math-1.5B

Figure 1: We show that negative gradients can lead to small or reduced likelihood change of positive
samples in GRPO. The log-likelihood gains achieved by Pos Only training () are significantly
higher than those from GRPO (blue) for Qwen-0.5B-Ins (a) and Deepseek-1.5B (b). In Qwen-Math-
1.5B (c), samples with small or reduced A(x) (left) are primarily influenced by negative gradients, as
evidenced by their larger A(x) in the Pos Only setup. However, some samples on the right show
smaller A(zx) than in GRPO, indicating that negative gradients are not always harmful.

https://arxiv.org/abs/2402.03300

Negative token hidden rewards

Down-weight penalties on tokens that are probably okay

Base model + Method AIME24 AMC MATHS00 Minerva Olympiad Avg.
Qwen2.5-Math-1.5B

Base 3.3 20.0 39.6 7.7 24.9 19.10

GRPO 13.3 57.5 71.8 29.0 34.1 41.14

Pos Only 10.0 57.5 70.6 30.1 31.0 39.84

NTHR 16.7 57.5 70.8 30.5 34.2 41.94
Qwen2.5-0.5B-Ins

Base 0.0 2.5 334 4.4 7.0 9.46

GRPO 0.0 7.5 33.8 9.2 8.1 11.72

NTHR 0.0 10.0 36.6 8.1 8.6 12.66
Qwen2.5-1.5B-Ins

Base 0.0 22.5 53.0 19.1 20.7 23.06

GRPO 3.3 32.5 57.2 18.8 23.0 26.96

NTHR 6.7 35.0 58.8 21.0 20.9 28.48
Qwen2.5-Math-1.5B (deepscaler)

Base 3.3 20.0 39.6 7.7 24.9 19.10

GRPO 10.0 42.5 72.4 324 31.9 37.80

NTHR 16.7 47.5 73.2 29.4 31.4 39.60
Qwen2.5-3B

Base 10.0 37.5 58.6 26.1 24.6 31.36

GRPO 6.7 35.0 66.6 31.2 29.9 33.88

NTHR 10.0 47.5 65.6 31.6 26.8 36.30

Table 2: Results across selected math benchmarks for different Qwen2.5 models and methods. NTHR
consistently provides average performance gains on various models.

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Better supervisory signal implies better learning
Classification: target is Lp = E(,) L(z,y) = E; Ey; £, (f(z))

Normally: see {(x;,y;)}, minimize

Better supervisory signal implies better learning
e Classification: targetis Lp = E;) L(z,y) = Ez Ey £, (f(x))

e Normally: see {(x;, y;)}, minimize

Better supervisory signal implies better learning
e Classification: targetis Lp = E;) L(z,y) = Ez Ey £, (f(x))

e Normally: see {(x;, y;)}, minimize (Z(g]) € R¥ is vector of losses for all possible labels)

n

N N k
Lxy = Db, (F)) = 5= D0 D 0w = le(F(2)) = = Doe - E(F(2)

1=1 =1 c=1 1=1

Better supervisory signal implies better learning
e Classification: targetis Lp = E;) L(z,y) = Ez Ey £, (f(x))

e Normally: see {(x;, y;)}, minimize (Z(g}) € R¥ is vector of losses for all possible labels)

N N k n
Lxy = 3 2 (f@) = 3 Do D 1w = helf@)) = 5 D ey - E(S(@1)

1 —_
e Potentially better scheme: see {(xi,pf""")}, minimize Lt‘”"(f) = — Zp’?‘”" - l(f(z;))

Better supervisory signal implies better learning
e Classification: targetis Lp = E;) L(z,y) = Ez Ey £, (f(x))

e Normally: see {(x;, y;)}, minimize (Z(g}) € R¥ is vector of losses for all possible labels)

1 N 1 N k 1 - .
Lxy =+ D 4, (f(z) = ~ D) Wy =)e(f(2:)) = ~ > ey - £(f(z))
i=1 i=1 c=1 i=1
1 o .
e Potentially better scheme: see {(z;, p*")}, minimize L**"(f) = ~ pr‘”" - l(f(z;))
i=1

= Can reduce variance ifpf‘”' ~ p;, the true conditional probabilities

Better supervisory signal implies better learning
e Classification: targetis Lp = E;) L(z,y) = Ez Ey £, (f(x))

e Normally: see {(x;, y;)}, minimize (Z(g}) € R¥ is vector of losses for all possible labels)

1 N
=3 2 b

1=1

EX,y

e Potentially better sc

m Can reduce varig

L2-distance of p tar and p*

AT]
@ —
0.820{ Hve o 1=1
- ou’le ©
v ° far_ Y o®
n ® o P %o
208381 o A s N
@
@
b ° o D @#o I
C 0.836 A A :QS: o, & E :p
: i Noisy p ...‘. @®e 7’:1
O 0.834 1 OHT o e°
S LS ¢ l"‘L =
O 0.832 1 A cr o
< KD
0.830 - A EskD o
0 5 10 15 20 25 30

Knowledge distillation

* Process:
= Train a teacher %" on {(z;, y;)} with standard ERM, L(f)

= Train a student on {(z;, f7"*"(x;))} with L

fstudent Jcteacher

e Usually is “smaller” than

Knowledge distillation

* Process:
= Train a teacher %" on {(z;, y;)} with standard ERM, L(f)

= Train a student on {(z;, f2%"*"(x;))} with L

student teacher
f f

e Usually is “smaller” than

e But “self-distillation” (using the same architecture), often f*"%¢" outperforms feecher)

Knowledge distillation

Process:
= Train a teacher £%%"" on {(z;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f2%"*"(x;))} with L

fstudent Jcteacher

Usually is “smaller” than
But “self-distillation” (using the same architecture), often f*™%¢" outperforms feecher)

One possible explanation: fte“Che’"(:I:i) is closer to p? than sampled y;

Knowledge distillation

Process:
= Train a teacher £%%"" on {(z;,v;)} with standard ERM, L(f)

= Train a student on {(z;, f7"*"(x;))} with L

student teacher
f f

Usually is “smaller” than

But “self-distillation” (using the same architecture), often f*™%¢" outperforms feecher)

fteacher (

One possible explanation: ZIZZ) is closer to p;‘ than sampled vy;

But why would that be?

Zig-Zagging behaviour in learning

Update:3696
L 4 L 4
x
Easy sample Medium sample

Hard sample

Hard sample

Plots of (three-way) probabilistic predictions: X shows p?, X shows y;

eNTK explains it

e Let ¢ (%) = softmax(f; (%)) € R¥; for cross-entropy loss, one SGD step gives us

q111(Z) — q:(7) = n A(Z) Kw, (2,) (Pfar — g (zi)) + 0(772)

A: (%) = diag(q:(2)) — q:(%)q: (£) " is the covariance of a Categorical(g; (Z))

eNTK explains it

e Let ¢ (%) = softmax(f; (7)) € RF; for cross-entropy loss, one SGD step gives us

Gt11(7) — @ () = n A (2) Kw, (2, 2;) (

D" — qe(z:)) + O(n")

A: (%) = diag(q:(2)) — q:(%)q: (£) " is the covariance of a Categorical(g; (Z))

e epoch start
+ epoch end

e Xo update start
-+ Xo update end

—*—'o —— Other Xu update

! eppch 10: .*\

epoch 90: <4 -@ee———e

eNTK explains it

e Let ¢ (%) = softmax(f; (%)) € R¥; for cross-entropy loss, one SGD step gives us

@e+1(7) — a¢(2) = 1 A(2) Kw, (7, 2:) (0"

—q(z:)) + O(n’)

A: (%) = diag(q:(2)) — q:(%)q: (£) " is the covariance of a Categorical(g; (Z))

e Improves distillation (esp. with noisy labels) to take moving average of ¢;(x;) as D;

e epoch start
® + epoch end
e Xo update start
- “.(~’§~ e + Xo update end
—— Other Xu update

epoch 10: .h

epoch 90: <4 -@ee———e

tar

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Fine-tuning

Xpr — PT-backbo:ne — h:d — PT-loss

v z = f(Xps) q=49)

e Head DS-loss
DS —*|DS-backbone| —— | DS-head| — L(q,y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

Fine-tuning

Xpr — PT-backbo:ne — h:d — PT-loss

v z = f(Xps) q=9g2)

e Head DS-loss
DS —*|DS-backbone| —— | DS-head| — L(q,y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

e |[f we only fine-tune: noise from random head might break our features!

Fine-tuning

Xpr — PT-backbo:ne — h:d — PT-loss

v z = f(Xps) q=9g2)

e Head DS-loss
DS —*|DS-backbone| —— | DS-head| — L(q,y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

e |[f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!

Fine-tuning

e Earlier Stopping
(! 100
I PT 96.7 1
Xpt —| PT-backbone |—— heag| — PT-loss o5
; ea 96.6 1 HP to
ST T T 96.5 1 - Lgp converge
copy : 96.4 - E 85
M z = [(Xps) q=492)
DS-loss 96.31 —— FT valid-acc 50
XDS —|DS-backbone| — | DS-head | —— L(q,y) 96.2- —+— HP train-acc
)
Random 10° 101 102
Head HP epochs

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

e |[f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

ze41(2) — () = %Z ’C{vt(, Ti) (Vth(CBz'))T (ey, — at(zi))+ 0(772)

Z:1 ——— ™ N~ 7 v o
eNTK of backbone direction of head “energy”

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

ze41(2) — () = %Z ’C{vt(, Ti) (Vth(CBz'))T (ey, — at(zi))+ 0(772)

Z:1 ——— ™ N~ 7 v o
eNTK of backbone direction of head “energy”

e |finitial “energy”, e.g. Ewi,yi €y, — Do () || is small, features don't change much

How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

ze41(2) — () = %Z ’C{vt(, Ti) (Vth(CBz'))T (ey, — at(zi))+ 0(772)

i=1 N—— O\ ~ 4 ~~ o
eNTK of backbone direction of head “energy”
e |f initial “energy”, eg. K... .. |le,. — x;)|, is small, features don't change much
gy 1 €.8. Wy, . ||€y, — PO\Li 2]

e |f we didn't do any head probing, “direction” is very random, especially if g is rich

How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

Ze41(7) — 2 Z K , Ti) (Vth(CBz'))T (ey, — at(zi))+ 0(772)
R,_/ ~ / ~ s
eNTK of backbone direction of head “energy”

If initial “energy”, e.g. By, . €y, — Po(x:)]|,
If we didn't do any head probing, “direction” is very random, especially if g is rich

Specializing to simple linear-linear model, can get insights about trends in 2

How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

Ze41(7) — 2 Z K , Ti) (Vth(CBz'))T (ey, — at(zi))+ 0(772)
R,_/ ~ / ~ s
eNTK of backbone direction of head “energy”

If initial “energy”, e.g. K., .. ||€y, — po(z:)]|.

If we didn't do any head probing, “direction” is very random, especially if g is rich
Specializing to simple linear-linear model, can get insights about trends in 2

Recommendations from paper:
= Early stop during head probing (ideally, try multiple lengths for downstream task)

= | abel smoothing can help; so can more complex heads, but be careful

How good will our fine-tuned features be? [Wei/Hu/Steinhardt 2022]

https://arxiv.org/abs/2203.06176

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Pool-based active learning

Pool-based active learning

Pool-based active learning

Pool-based active learning

Pool-based active learning

Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

et) o (5 [) e ([[2]) (] - ([2)

Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

et) o (5 [) e ([[2]) (] - ([2)

-1
= Rank-one updates for efficient computation: schema O+ [' x | (Qg)

Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

et) o (5 [) e ([[2]) (] - ([2)

-1
= Rank-one updates for efficient computation: schema O+ [' x | (Qg)

e We prove this is exact for infinitely wide networks
= fo = fr = fouf(e,,0)y agrees with direct fo — fruf(z;,0:)}

Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

et) o (5 [) e ([[2]) (] - ([2)

-1
= Rank-one updates for efficient computation: schema O+ [' x | (BB)

e We prove this is exact for infinitely wide networks
= fo = fr = fouf(e,,0)y agrees with direct fo — fruf(z;,0:)}

e | ocal approximation with eNTK “should” work much more broadly than “NTK regime”

Much faster than SGD

- Naive NTK w/o Block! ' NTK

;3hr

3 17min -

-2min

01 2 3 45 6 789
Cycle

Time

Much more effective than infinite NTK and one-step SGD

—eo— NN NTK —eo— NN 1-Step —e = GP
—&— NN Inf NTK =—e— NN (Random) =—e= GP (Random)

0 1 2 3 4 5 6 7 8 9

Matches/beats state of the art

—— NTK —— BADGE —— Margin —— NTK —— BADGE —— Margin —— NTK —— BADGE —— Margin
Random —— Entropy —— LL4AL Random —— Entropy Random —— Entropy
2
3 2
1 | /\/\/_f 2 i
)) <
S~ S~ S~
M’ S 1 | M’ 1 |
QO 01! o &}
] 4]]
.<-J: g1 /88 90 91 91,91 92 92 92 93(% .q: ‘ﬂﬁ
0_
< _]_ _ < 595 65 71 75 78 80 82 83 84 B5(% <

60 66 B67(%)

0123456 789 01 23456 789 0 1 2 3 4 5 6 7
Cycle Cycle Cycle

(a) SVHN: 1-layer WideResNet (b) CIFAR10: 2-layer WideResNet (¢) CIFAR100: ResNetl8

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

Downside: usually more computationally expensive (especially memory)

Enables new interaction modes

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...

e With k classes, IC(X, X) € RF¥V*EN _ potentially very big

Approximating empirical NTKs
e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
e With k classes, IC(X, X) € RF¥V*EN _ potentially very big

e But actually, we know that Ey, Ky (21, x2) is diagonal for most architectures

" Let pNTK,, (21, 22) = [Vw f1(21)|[Vw fi (z2))" -

N\ J

N

1xp px1
Fw Kw(z1,22) = Eu[DNTK,, (z1,22)]I;. pNTK(X, X) € RYY (no k)

Approximating empirical NTKs

e | hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
e With k classes, IC(X, X) € RF¥V*EN _ potentially very big

e But actually, we know that Ey, Ky (21, x2) is diagonal for most architectures

" Let pNTK,, (21, 22) = [Vw f1(21)|[Vw fi (z2))" -

N\ J
N

1xp px1
Fw Kw(z1,22) = Eu[DNTK,, (z1,22)]I;. pNTK(X, X) € RYY (no k)

= Can also use “sum of logits” ﬁ Z?:l fj instead of just “first logit” f1

Approximating empirical NTKs

| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
with k classes, (X, X) € R¥V>*N _potentially very big

But actually, we know that Ey, KCy (21, 2) is diagonal for most architectures

" Let pNTK,, (21, 22) = [Vw f1(21)|[Vw fi (z2))" -

N\ J
N

1xp px1
Fw Kw(z1,22) = Eu[DNTK,, (z1,22)]I;. pNTK(X, X) € RYY (no k)

= Can also use “sum of logits” ﬁ Z?:l fj instead of just “first logit” f1

Lots of work (including above) has used pNTK instead of K
= Often without saying anything; sometimes doesn't seem like they know they're doing it

Approximating empirical NTKs

| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
with k classes, (X, X) € R¥V>*N _potentially very big

But actually, we know that Ey, KCy (21, 2) is diagonal for most architectures

" Let pNTK,, (21, 22) = [Vw f1(21)|[Vw fi (z2))" -

N\ J
N

1xp px1
Fw Kw(z1,22) = Eu[DNTK,, (z1,22)]I;. pNTK(X, X) € RYY (no k)

= Can also use “sum of logits” ﬁ Z?:l fj instead of just “first logit” f1

Lots of work (including above) has used pNTK instead of K
= Often without saying anything; sometimes doesn't seem like they know they're doing it

Can we justify this more rigorously?

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlaw2) Vit H(j — j’)¢($1)T¢($2)

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢($2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢($2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

e We want to bound difference (1, 23) — pNTK (21, 22) I

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢($2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

e We want to bound difference (1, 23) — pNTK (21, 22) I
= Want v-erfvl and v;.rAfvj to be close, and 'UJ._A'UJ-/ small, for random v and fixed A

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢(fc2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

e We want to bound difference (1, 23) — pNTK (21, 22) I
= Want v-erfvl and v;.rAfvj to be close, and 'UJ._A'UJ-/ small, for random v and fixed A

_ K2\ .+ 4vh
K —pNTK Iy _ [K*|lp+avh - o2

= Using Hanson-Wright: <
1Kl 7 Tr(IC¢) 0

pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢(fc2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

e We want to bound difference (1, 23) — pNTK (21, 22) I
= Want v-erfvl and v;.rAfvj to be close, and 'UJ._A'UJ-/ small, for random v and fixed A

K —pNTK Iy _ [K*|lp+avh - o2
1K 7 B Tr(K?) 0

= Fully-connected RelU nets at init., fan-in mode: numerator O(h+/h), denom ©(h?)

= Using Hanson-Wright:

PNTK's Frobenius error

FCN ConvNet ResNet18 WideResNet
L2 wpa2se — wp 2048 0.951 1
w —— WD512 —— WD 4096 0.90
— 1.0 .
S — WD 1024 —— WD 8102
=08l 0.85 1
= 0.80 1
@ 0.6
-L o 0.751 — WF4
® 0.70 ¢ —— WF8
& — WF 16
=02 0.651 — WF32
—— WF 64
0.0 ' . . 0.60 ' . - ' -
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: Evaluating the relative difference of Frobenius norm of ©,(D, D) and O4(D, D) ® Io at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©¢|| 7 and
|99 ® Ip||F at initialization.

FCN

o
)

—— WD 256
—— WD 512
— WD 1024

—
=}

— WD 2048
—— WD 4096
— WD 8182

e
w

166 ® 1 — O6l|< / ||O6l|r
[
I H =)

=
[=

o

50 100 150 200

Epoch

PNTK's Frobenius error

ConvNet

0.951
0.901
0.851
0.80
0.751
0.701

0.651

— WF 4
— WF 8
—— WF 16
— WF 32
~——— WF 64

0.60
0

50

100
Epoch

150 200

0.2

0.1

ResNet18

— WF1
—— WF 2
—— WF 4

— WF 8
——— WF 16
— WF 32

50

100
Epoch

150

200

WideResNet

0 50 100 150 200
Epoch

Figure 3: Evaluating the relative difference of Frobenius norm of ©,(D, D) and O4(D, D) ® Io at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©||» and

164 ® Io||F at initialization.

Same kind of theorem / empirical results for largest eigenvalue,

and empirical results for Apin, condition number

Kernel regression with pNTK
e Reshape things to handle prediction appropriately:
fic(z) = fo(2) + KWO(, X) K, (XaX)_l (y — fo(X))

v v H_/\ ~ A ~~ _/
kx1 kx1 kxkN kN xkN kN x1

-
fontic (2) = fo(2) + (PNTKy, (7, X) PNTK,y, (X, X) ™ (v = fo(X))
H/_/ v \ ~ J_ ~ A -~ >y
kx1 kx1 1xN NxN Nxk

* Wehave || fic(7) — fontx ()] = O(

again

1
)

Kernel regression with pNTK

FCN ConvNet ResNetl8 WideResNet

1.04
1,0-\’_\

0.91

WEF 2
WF 4
WF 8
WF 16
WF 32

0.8

0.8 0.6

0.7 0.4

0.6 0.2

— WF 32

059 — wF64 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 k 0 50 100 150 200
Epoch Epoch Epoch Epoch
Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random

CIFAR-10 points and testing on |X'| = 500. For wider NN, the relative difference in f%"(X) and f%"(X) decreases at
initialization. Surprisingly, the difference between these two continues to quickly vanish while training the network.

FCN ConvNet ResNet18 WideResNet
—— WD 256 7
—— WD 512]
31 —— WD 1024 6
9 — WD 2048 5
J —— WD 4096 4l
31 —— WD 8192
< 3
4
3
= 2
< 1
0_
71 4
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of f%" and f¥" at initialization. Again, the
difference between these two continues to vanish throughout the training process using SGD.

Cifar-10
10-! — :
_____ >~—-—""
’{..-—-——
10-2 r
I
I
!
E1(]_3 ;’.r
Ry
[;
| ‘
s d | |
-.——-——"'-"-
o»—-“-"‘*
EEN 4
10 v |
d -#- pNTK
18 34 50 101 152 200

ResNet depth

Figure 1: Wall-clock time to evaluate the eNTK and pNTK for one pair of inputs, across datasets and ResNet depths.

pNTK speed-up

Cifar-100
ol g — :
==
e~
.
10—2 ;’.r
'
'
) ¢
o 1073
g
=
10-4
‘‘‘‘‘‘ _.___.________-_.
P
PO S
e -e- eNTK
4 -#- pNTK
18 34 50 o1 — =
ResNet depth

Tiny ImageNet (200)

.- S
e -
,-'.- B
/'ﬂ
jy
e
- —,"— -
- ===
T - eNTK
- -®- pNTK
18 34 50 101 152 200

ResNet depth

PNTK speed-up on active learning task

. pNTK - eNTK
08 - - 50min
06 -
-38min
O
- 26min é
—
- 14min
- 2min

0O 1 2 3 4 5 6 7 8 9
Cycle

PNTK for full CIFAR-10 regression

e (X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl18 WideResNet

Test Accuracy (%)
[] o [s)]
. = bk <

< 45 —— WD 256 —— WD 2048 451
vl —— WD 512 —— WD 4096 — WF4 —— WF16 — WF1 —— WF4 — WF2 —— WF8
10 —— WD 1024 —— WD 8192 551 — WF8 —— WF32 401 — WF2 —— WF8 — WF4 —— WF16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",

PNTK for full CIFAR-10 regression
e (X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl18 WideResNet

)]
(=}

Test Accuracy (%)
= o

N
w

— WD 256 — WD 2048 451
—— WD 512 —— WD 4096 — WF4 —— WF16 — WF1 — WF 4

? lin

— WF2 —— WF8
10 —— WD 1024 —— WD 8192 551 —— WF8 —— WF32 401 — WF2 —— WF38 — WF4 —— WF16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)

PNTK for full CIFAR-10 regression
e (X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl18 WideResNet

)]
(=}

Test Accuracy (%)
= o

N
w

— WD 256 — WD 2048

S]
vl —— WD 512 —— WD 4096 —— WF4 —— WF 186 45 — WF1 —— WF4 — WF2 —— WF8
10 —— WD 1024 —— WD 8192 551 —— WF8 —— WF32 401 — WF2 —— WF38 — WF4 —— WF16
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)
e Way worse than SGD

Recap

eNTK is a good tool for intuitive understanding of the learning process

Ren, Guo, S. Better Supervisory Signals by Observing Learning Paths

Ren, Guo, Bae, S. How to prepare your task head for finetuning

Ren, S. Learning dynamics of LLM Finetuning

Deng, Ren, M. Li, S., X. Li, Thrampoulidis On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S. Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S. A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel

https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543

