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LLM “post-training”

e Language models (e.g. GPT-2)
= Scrape up a ton of the internet

= Train a big Transformer for next-token prediction


https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/
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e Turning a language model into a chatbot (e.g. ChatGPT):
= Run “supervised fine-tuning” on a dataset of chatbot-like interactions

= Run “preference optimization”: given prompt x, say A, not B
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https://www.reddit.com/r/learnprogramming/comments/7w5bm4/why_on_people_on_stack_overflow_so_rude/

Surprises in LLM post-training

e Preference optimization: “given prompt x, say 4, not B”

e Common algorithm: Direct Preference Optimization [RSM+ NeurlPS-23]


https://arxiv.org/abs/2305.18290
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e Even in the best case, “too much” DPO hurts [RHPF CoLM-24]
e Makes B way less likely, but eventually, model almost always says some C

e There are some workarounds, but...why?
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Learning dynamics

e Most theoretical analyses in this area ask: what do optimal solutions look like?
= Turns out the loss function is very underspecified; there are many optimal solutions

= “Implicit regularization” studies which one GD/SGD/Adam/... eventually converges to
o “Eventually” can take a really long time

e We'll take a related, but more qualitative approach

e \What does each step do to the model?
= Mapping from parameters to “what the model does” is complicated

= When | take an SGD step to “learn” f(z;) = v;,

what happens to my predictions on ?
o Closely related to “local elasticity” [HS ICLR-20]


https://arxiv.org/abs/1910.06943
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= If 0(z) = z, A is the identity; if o = log Softmax, A; = I — 15 m; ()T

o Ki(Z,7;) = (Vwz(2)|w,)(Vwz(z:)|w, )" is k x kempirical neural tangent kernel of z
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This! | spent a lot of time digging into NTKs, and I'm still not sure the math
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A quick aside: the “NTK regime” and infinite limits
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e Full-batch GD: “stacking things up”,

2
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e Observation I: If fis “wide enough” with any usual architecture+init* [Yang+Litwin 2021],
IC: (-, X)) is roughly constant through training
= For square loss, L(X,y) = f:(X) — y: dynamics agree with kernel regression!

t—00

= fo(2) — Ko (2, X) Ko (X, X) (v — fo(X)) + fo(2)

e Observation Il: As f becomes “infinitely wide” with any usual architecture+init* [Yang 2019],
a.s.
Ko(z1,z2) —> NTK(x1, z2), independent of the random wy
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Infinite NTKSs are great

e |nfinitely-wide neural networks have very simple behaviour!
= No need to worry about bad local minima, optimization complications, ...

= Understanding “implicit bias” of wide nets =~ understanding NTK norm of functions

e Can compute NTK exactly for many architectures
m github.com/google/neural-tangents

e A great kernel for many kernel methods!
= Using in SVMs was then-best overall method across many small-data tasks [Arora+ 2020]

= Good results in statistical testing [Jia+ 2021], dataset distillation [Nguyen+ 2021],
clustering for active learning batch queries [Holzmdller+ 2022], ...


https://github.com/google/neural-tangents
https://arxiv.org/abs/1910.01663
https://proceedings.mlr.press/v139/jia21a.html
https://arxiv.org/abs/2107.13034
https://arxiv.org/abs/2203.09410

But (infinite) NTKs aren't “the answer”

e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
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= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive
= Attention is even harder to handle

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o JC, activations in the net don't change much [Chizat+ 2019] [Yang/Hu 2021]
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e Computational expense:
= Poor scaling for large-data problems: typically n? memory and n’ton computation
o CIFAR-10 hasm = 50000, k£ = 10: an nk x nk matrix of float64s is 2 terabytes!

o ILSVRC2012 hasn = 1200000, £ = 1 000: 11.5 million terabytes (exabytes)

3

= For deep/complex models (especially CNNSs), each pair very slow / memory-intensive
= Attention is even harder to handle

e Practical performance:
= Typically performs worse than GD for “non-small-data” tasks (MNIST and up)

e Theoretical limitations:
= NTK “doesn't do feature learning”:
o JC, activations in the net don't change much [Chizat+ 2019] [Yang/Hu 2021]

= We now know many problems where gradient descent on an NN > any kernel method
o Cases where GD error — 0, any kernel is barely better than random [Malach+ 2021]


https://arxiv.org/abs/1812.07956
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2103.01210

What can we learn from empirical NTKs?
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e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees



What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= \Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees



Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token



Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token

e Once we've framed it correctly, this is fine: stack prompt+response into y; = [a:i, yi]



Adapting to the LLM setting

e First problem: we don't classify a full response at a time, we do it token-by-token

e Once we've framed it correctly, this is fine: stack prompt+response into y; = [:ci, yi]

e Changeinlogn(%,, | Z,7.,,_1) based on token-by-token update of x;, y; is

Alog (7 Zn A () e (s Xt G ()]s + O72)



Adapting to the LLM setting

First problem: we don't classify a full response at a time, we do it token-by-token

Once we've framed it correctly, this is fine: stack prompt+response into y; = [:ci, yi]

Change inlog 7 (%,, | %, 7., 1) based on token-by-token update of x;, y; is

[Alogm (7 | Z AL ()] [Ce (7, X )] [Ge (i)t + Ol

Second problem: we can't check all possible output probabilities anymore

)



Adapting to the LLM setting

First problem: we don't classify a full response at a time, we do it token-by-token

Once we've framed it correctly, this is fine: stack prompt+response into y; = [a:i, yi]

| ©,17.,. 1) based on token-by-token update of x;, y; is

Change in log 7(

Alogm (7 | Dl = — S 1A [t (5 x0) G )+ O7)
=1

Second problem: we can't check all possible output probabilities anymore

Workaround: track some informative possible responses
= The dataset responses, rephrases, similar strings with different meanings

= [rrelevant responses in training set, random sentences...
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LLM supervised fine-tuning

e SFT makes dispreferred answers more likely

e ..because they're “similar enough” to the preferred ones

o ICisreasonably large; G starts big (pulls up), gets small (pulls up less)

e Ungrammatical responses just go down; /IC is small, so no upwards pressure

e Also makes answers to different questions more likely...one form of hallucination?
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)

me(y; | @) )

Tref (Y; | 24) _

L0 (i, ,y; ) =logo (ﬂ log

which gives that [Alog 7¢ (7 | %)]m is about
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Direct Preference Optimization (DPO)

i T X; T Z_ T; il
PP (o vt ) = logor [ f |log YT g T [20)
Tref (yz | CBZ) Tref (yz | mz) _

which gives that [Alog 7 (7 | %)]m isabout PP (x) = B(1 —o(...)) (m(y | x) — ey)

X)]m (Z[Kt X )] [gDPO( )i — Zi[’Ct(iZ,X{)]m,l[ ?PO(Xz’)]l>

[=1

This negative gradient can do really weird things:
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Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

e To decreaselog m((y, )m | [X; ]:m ), decrease numerator and increase denominator

o If z(x),~ is big, dominates the sum: increasing it is almost as effective as decreasing z(x),,

Tti1
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Negative gradients and the squeezing effect

exp(2(),)
exp((2),) + exp(2(@)yr) + .

m(y | z) =

)m | [X; ]:m ), decrease numerator and increase denominator

ost as effective as decreasing z(x),,




Positive gradients cancel out...in the positive context




Squeezing effect accumulates over time
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What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \Why GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees



Group Relative Policy Optimization (GRPO) [DeepSeekMath 24]

e Similar to a “group-wise” version of DPO; negative gradients have similar effect!
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(a) Qwen-0.5B-Instruct (b) Deepseek-1.5B (c) Qwen-Math-1.5B

Figure 1: We show that negative gradients can lead to small or reduced likelihood change of positive
samples in GRPO. The log-likelihood gains achieved by Pos Only training ( ) are significantly
higher than those from GRPO (blue) for Qwen-0.5B-Ins (a) and Deepseek-1.5B (b). In Qwen-Math-
1.5B (c), samples with small or reduced A(x) (left) are primarily influenced by negative gradients, as
evidenced by their larger A(x) in the Pos Only setup. However, some samples on the right show
smaller A(zx) than in GRPO, indicating that negative gradients are not always harmful.


https://arxiv.org/abs/2402.03300

Negative token hidden rewards



Down-weight penalties on tokens that are probably okay

Base model + Method AIME24 AMC MATHS00 Minerva Olympiad Avg.
Qwen2.5-Math-1.5B

Base 3.3 20.0 39.6 7.7 24.9 19.10

GRPO 13.3 57.5 71.8 29.0 34.1 41.14

Pos Only 10.0 57.5 70.6 30.1 31.0 39.84

NTHR 16.7 57.5 70.8 30.5 34.2 41.94
Qwen2.5-0.5B-Ins

Base 0.0 2.5 334 4.4 7.0 9.46

GRPO 0.0 7.5 33.8 9.2 8.1 11.72

NTHR 0.0 10.0 36.6 8.1 8.6 12.66
Qwen2.5-1.5B-Ins

Base 0.0 22.5 53.0 19.1 20.7 23.06

GRPO 3.3 32.5 57.2 18.8 23.0 26.96

NTHR 6.7 35.0 58.8 21.0 20.9 28.48
Qwen2.5-Math-1.5B (deepscaler)

Base 3.3 20.0 39.6 7.7 24.9 19.10

GRPO 10.0 42.5 72.4 324 31.9 37.80

NTHR 16.7 47.5 73.2 29.4 31.4 39.60
Qwen2.5-3B

Base 10.0 37.5 58.6 26.1 24.6 31.36

GRPO 6.7 35.0 66.6 31.2 29.9 33.88

NTHR 10.0 47.5 65.6 31.6 26.8 36.30

Table 2: Results across selected math benchmarks for different Qwen2.5 models and methods. NTHR
consistently provides average performance gains on various models.



What can we learn from empirical NTKs?
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= Can reduce variance ifpf‘”' ~ p;, the true conditional probabilities
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Knowledge distillation

Process:
= Train a teacher £%%"" on {(z;,v;)} with standard ERM, L( f)

= Train a student on {(z;, f7"*"(x;))} with L

student teacher
f f

Usually is “smaller” than

But “self-distillation” (using the same architecture), often f*™%¢" outperforms feecher)

fteacher (

One possible explanation: ZIZZ) is closer to p;‘ than sampled vy;

But why would that be?



Zig-Zagging behaviour in learning

Update:3696
L 4 L 4
x
Easy sample Medium sample

Hard sample

Hard sample

Plots of (three-way) probabilistic predictions: X shows p?, X shows y;



eNTK explains it

e Let ¢ (%) = softmax(f; (%)) € R¥; for cross-entropy loss, one SGD step gives us
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eNTK explains it

e Let ¢ (%) = softmax(f; (%)) € R¥; for cross-entropy loss, one SGD step gives us

@e+1(7) — a¢(2) = 1 A(2) Kw, (7, 2:) (0"

—q(z:)) + O(n’)

A: (%) = diag(q:(2)) — q:(%)q: (£) " is the covariance of a Categorical(g; (Z))

e Improves distillation (esp. with noisy labels) to take moving average of ¢;(x; ) as D;

e epoch start
® + epoch end
e Xo update start
- “.(~’§~ e +  Xo update end
—— Other Xu update

epoch 10: .h

epoch 90: <4 -@ee———e

tar



What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees



Fine-tuning
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e Head DS-loss
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e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together
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Xpr — PT-backbo:ne — h:d — PT-loss

v z = f(Xps) q=9g2)

e Head DS-loss
DS —*|DS-backbone| —— | DS-head| — L(q,y)

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

e |[f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!



Fine-tuning

e Earlier Stopping
( ! 100
I PT 96.7 1
Xpt —| PT-backbone |—— heag| — PT-loss o5
; ea 96.6 1 HP to
ST T T 96.5 1 - Lgp converge
copy : 96.4 - E 85
M z = [ (Xps) q=492)
DS-loss 96.31 —— FT valid-acc 50
XDS —|DS-backbone| — | DS-head | —— L(q,y) 96.2- —+— HP train-acc
)
Random 10° 101 102
Head HP epochs

e Pretrain, re-initialize a random head, then adapt to a downstream task. Two phases:
= Head probing: only update the head g(2)

= Fine-tuning: update head g(z) and backbone z = f(x) together

e |[f we only fine-tune: noise from random head might break our features!

e |f we head-probe to convergence: might already fit training data and not change features!



How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):
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How much do we change our features?

e Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):
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How much do we change our features?

Same kind of decomposition with backbone features z = f(x), head ¢ = softmax(g(z)):

Ze41(7) — 2 Z K , Ti ) (Vth(CBz'))T (ey, — at(zi))+ 0(772)
R,_/ ~ / ~ s
eNTK of backbone direction of head “energy”

If initial “energy”, e.g. K., .. ||€y, — po(z:)]|.

If we didn't do any head probing, “direction” is very random, especially if g is rich
Specializing to simple linear-linear model, can get insights about trends in 2

Recommendations from paper:
= Early stop during head probing (ideally, try multiple lengths for downstream task)

= | abel smoothing can help; so can more complex heads, but be careful



How good will our fine-tuned features be? [Wei/Hu/Steinhardt 2022]


https://arxiv.org/abs/2203.06176

What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees
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Approximate retraining with local linearization

e Given fg trained on labeled data £, approximate fr{(z;,y,)} With local linearization

et ) o (5 [ ) e ([ [2]) (] - ([2)

-1
= Rank-one updates for efficient computation: schema O+ [ ' x | (BB)

e We prove this is exact for infinitely wide networks
= fo = fr = fouf(e,,0)y agrees with direct fo — fruf(z;,0:)}

e | ocal approximation with eNTK “should” work much more broadly than “NTK regime”



Much faster than SGD

- Naive NTK w/o Block! ' NTK
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Much more effective than infinite NTK and one-step SGD

—eo— NN NTK —eo— NN 1-Step —e = GP
—&— NN Inf NTK =—e— NN (Random) =—e= GP (Random)

0 1 2 3 4 5 6 7 8 9



Matches/beats state of the art
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(a) SVHN: 1-layer WideResNet  (b) CIFAR10: 2-layer WideResNet (¢) CIFAR100: ResNetl8

Figure 2: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

Downside: usually more computationally expensive (especially memory)



Enables new interaction modes



What can we learn from empirical NTKs?

e As atheoretical tool for local understanding:
= Why DPO breaks

= \WWhy GRPO does weird stuff + how to fix

= Fine-grained explanation for early stopping in knowledge distillation

= How you should fine-tune models
e As a practical tool for approximating “lookahead” in active learning

e Plus: efficiently approximating /Cs for large output dimensions k, with guarantees
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Approximating empirical NTKs

| hid something from you on active learning (and Wei/Hu/Steinhardt fine-tuning) results...
with k classes, (X, X) € R¥V>*N _potentially very big

But actually, we know that Ey, KCy (21, 2) is diagonal for most architectures

" Let pNTK,, (21, 22) = [Vw f1(21)|[Vw fi (z2))" -

N\ J
N

1xp px1
Fw Kw(z1,22) = Eu[DNTK,, (z1,22)]I;. pNTK(X, X) € RYY (no k)

= Can also use “sum of logits” ﬁ Z?:l fj instead of just “first logit” f1

Lots of work (including above) has used pNTK instead of K
= Often without saying anything; sometimes doesn't seem like they know they're doing it

Can we justify this more rigorously?
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pPNTK motivation
e Say f(x) = Vé(x), d(x) € R", and V € R¥*" has rows v; € R" with iid entries

o Ifv;; ~ N(0,0%), then vy and ﬁ Z;’:l v; have same distribution

Kw(xlawZ)jj’ — UJT Kfv\v(wlam2) Vit H(j — j’)¢($1)T¢(fc2)
PNTK,, (21, 22) = o] K%,y (21,22) v1 + ¢(@1)" $(22)

e We want to bound difference (1, 23) — pNTK (21, 22) I
= Want v-erfvl and v;.rAfvj to be close, and 'UJ._A'UJ-/ small, for random v and fixed A

K —pNTK Iy _ [K*|lp+avh - o2
1K 7 B Tr(K?) 0

= Fully-connected RelU nets at init., fan-in mode: numerator O(h+/h), denom ©(h?)

= Using Hanson-Wright:



PNTK's Frobenius error

FCN ConvNet ResNet18 WideResNet
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Figure 3: Evaluating the relative difference of Frobenius norm of ©,(D, D) and O4(D, D) ® Io at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©¢|| 7 and
|99 ® Ip||F at initialization.
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Figure 3: Evaluating the relative difference of Frobenius norm of ©,(D, D) and O4(D, D) ® Io at initialization and
throughout training, based on D being 1000 random points from CIFAR-10. Wider nets have more similar ||©||» and

164 ® Io||F at initialization.

Same kind of theorem / empirical results for largest eigenvalue,

and empirical results for Apin, condition number



Kernel regression with pNTK
e Reshape things to handle prediction appropriately:
fic(z) = fo(2) + KWO( , X) K, (XaX)_l (y — fo(X))

v v H_/\ ~ A ~~ _/
kx1 kx1 kxkN kN xkN kN x1

-
fontic (2) = fo(2) + (PNTKy, (7, X) PNTK,y, (X, X) ™ (v = fo(X))
H/_/ v \ ~ J\_ ~ A -~ >y
kx1 kx1 1xN NxN Nxk

* Wehave || fic(7) — fontx ()] = O(

again

1
)



Kernel regression with pNTK

FCN ConvNet ResNetl8 WideResNet
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Figure 7: The relative difference of kernel regression outputs, (4) and (5), when training on |D| = 1000 random

CIFAR-10 points and testing on |X'| = 500. For wider NN, the relative difference in f%"(X) and f%"(X) decreases at
initialization. Surprisingly, the difference between these two continues to quickly vanish while training the network.
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Figure 8: Using pNTK in kernel regression (as in Figure 7) almost always achieves a higher test accuracy than using
eNTK. Wider NNs and trained nets have more similar prediction accuracies of f%" and f¥" at initialization. Again, the
difference between these two continues to vanish throughout the training process using SGD.
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PNTK speed-up on active learning task
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PNTK for full CIFAR-10 regression

e (X, X) on CIFAR-10: 1.8 terabytes of memory
o pNTK (X, X) on CIFAR-10: 18 gigabytes of memory

FCN ConvNet ResNetl18 WideResNet

Test Accuracy (%)
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",
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e (X, X) on CIFAR-10: 1.8 terabytes of memory
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in (5) on the full CIFAR-10
dataset. As the NN’s width grows, the test accuracy of %" also improves, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of %",

e Worse than infinite NTK for FCN/ConvNet (where they can be computed, if you try hard)
e Way worse than SGD



Recap

eNTK is a good tool for intuitive understanding of the learning process

Ren, Guo, S. Better Supervisory Signals by Observing Learning Paths

Ren, Guo, Bae, S. How to prepare your task head for finetuning

Ren, S. Learning dynamics of LLM Finetuning

Deng, Ren, M. Li, S., X. Li, Thrampoulidis On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization

eNTK is practically very effective at “lookahead” for active learning

Mohamadi*, Bae*, S. Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels

You should probably use pNTK instead of eNTK for high-dim output problems:

Mohamadi, Bae, S. A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel



https://arxiv.org/abs/2203.02485
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2505.18830
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/2206.12543




