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Hilbert spacesHilbert spaces
A complete (real or complex) inner product space.

Inner product space: a vector space with an inner product:

 for , 

Induces a norm: 

Complete: “well-behaved” (Cauchy sequences have limits in )
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, functions, distributions of graphs of images, …

 is a kernel on  if there exists a Hilbert
space  and a feature map  so that

Roughly,  is a notion of “similarity” between inputs

Linear kernel on : 
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Scaling: if ,  is a kernel

Sum:  is a kernel

Is  necessarily a kernel?
Take , , .

Then 

But .
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Positive definitenessPositive definiteness
A symmetric function  is positive semi-de�nite
(psd) if for all , , ,

Hilbert space kernels are psd

psd functions are Hilbert space kernels
Moore-Aronszajn Theorem; we'll come back to this
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Limits: if  exists,  is psd

Products:  is psd

Powers:  is pd for any integer 

Exponents:  is pd

If ,  is pd

, the Gaussian kernel
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Reproducing kernel Hilbert space (RKHS)Reproducing kernel Hilbert space (RKHS)
Every psd kernel  on  de�nes a (unique) Hilbert space,
its RKHS , and a map  where

Elements  are functions on , with

Combining the two, we sometimes write 

 is the evaluation functional 
An RKHS is de�ned by it being continuous, or
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Moore-Aronszajn TheoremMoore-Aronszajn Theorem
Building  for a given psd :

Start with 

De�ne  from 

Take  to be completion of  in the metric from 

Get that the reproducing property holds for  in 

Can also show uniqueness

Theorem:  is psd i� it's the reproducing kernel of an RKHS



A quick check: linear kernelsA quick check: linear kernels

 on 

If , then 

Closure doesn't add anything here, since  is closed

So, linear kernel gives you RKHS of linear functions
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More complicated: Gaussian kernelsMore complicated: Gaussian kernels

 is in�nite-dimensional

Functions in  are bounded:

Choice of  controls how fast functions can vary:

Can say lots more with Fourier properties
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Linear kernel gives normal ridge regression:

Nonlinear kernels will give nonlinear regression!
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Kernel ridge regressionKernel ridge regression

How to �nd ? Representer Theorem: 

Setting derivative to zero gives   
satis�ed by 



Other kernel algorithmsOther kernel algorithms
Representer theorem applies if  strictly increasing:

Classi�cation algorithms:
Support vector machines:  is hinge loss

Kernel logistic regression:  is logistic loss

Principal component analysis, canonical correlation analysis

Many, many more…
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Some theorySome theory
If  universal,  can approximate any continuous func

 for all nonzero �nite
signed measures 

True for Gaussian, many other common kernels (but no
�nite-dimensional ones!)

Norm may go to  as approximation gets better

If RKHS norm is small, can learn quickly
e.g. Rademacher complexity of 

is at most 
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Limitations of kernel-based learningLimitations of kernel-based learning
Generally bad at learning sparsity

e.g.  for large 

Provably slower than deep learning for a few problems
e.g. to learn a single ReLU, , need norm
exponential in  [ ]

Also some hierarchical problems, etc [ ]

Yehudai/Shamir NeurIPS-19

Kamath+ COLT-20

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180
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Deep models usually end as 

Can think of as learned kernel, 

Does this gain us anything?
Random nets with trained last layer (NNGP) can be decent

As width , nets become neural tangent kernel
Widely used theoretical analysis

SVMs with NTK can be great on small data

Inspiration: learn the kernel model end-to-end
Ongoing area; good results in two-sample testing,
GANs, density estimation, meta-learning, semi-
supervised learning, …
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Mean embeddings of distributionsMean embeddings of distributions
Represent point  as , 

Represent distribution  as , 

Last step assumed e.g. 

Okay. Why?
One reason: ML on distributions [ ]

More common reason: comparing distributions

Szabó+ JMLR-16

https://arxiv.org/abs/1411.2066
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More!More!
Foundations: Berlinet and Thomas-Agnan, RKHS in
Probability and Statistics

Hardcore theoretical details: Steinwart and Christmann,
Support Vector Machines

Close connections to Gaussian processes [
]

Mean embeddings: survey of [
]

The practical sessions! Some pointers in there

Kanagawa+ 'GPs and
Kernel Methods' 2018

Muandet+ 'Kernel Mean
Embedding of Distributions'

https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

