Kernel Methods:
From Basics to Modern Applications

Danica J. Sutherland (she/her)
Computer Science, University of British Columbia
Data Science Summer School, January 2021

https://djsutherland.ml/

Motivation

e Machine learning!

Motivation

e Machine learning! ...but how do we actually do it?

Motivation
e Machine learning! ...out how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Motivation
e Machine learning! ...out how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Motivation
e Machine learning! ...out how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

ome o0 -q-... GO GNP © GO oGEDeee o @0 @GNe e

Motivation
e Machine learning! ...out how do we actually do it?
e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

e Extend ...

f(z) =w' (1,2,2%) = w' ¢()

Motivation
e Machine learning! ...out how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

e Extend ...
flz)=w'(1,z,2%) = w' ¢(z)
® .
“ o
% r
® (J
® @
"\. .
“~ o*’

Motivation
e Machine learning! ...out how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

e Extend ...
flz)=w'(1,z,2°) = w' ¢(z)
LY P
N o
% r
e o
® [4
. .
N o

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wa, y(x) = sign(f(x))

Extend ...

f(z) =w' (1,2,2%) = w' ¢()

Kernels are basically a way to study doing this with any,
potentially very complicated, ¢

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wa, y(x) = sign(f(x))

Extend ...

f(z) =w' (1,z,2%) = w' ¢(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wa, y(x) = sign(f(x))

Extend ...

f(z) =w' (1,z,2%) = w' ¢(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

¢ will live in a reproducing kernel Hilbert space

Hilbert spaces

e A complete (real or complex) inner product space.

Hilbert spaces
e A complete (real erecomptex) inner product space.

Hilbert spaces

e A complete (real erecomptex) inner product space.

e |nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + a2<f27g>?{

- <f,f>H >0f0rf750, (0,0)% =0

Hilbert spaces

e A complete (real erecomptex) inner product space.

e |[nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + a2<f27g>?{

- <f,f>H > Oforf?é(): (0,0)% =0
Induces a norm: || f|l = +/(f, f)u

Hilbert spaces

e A complete (real erecomptex) inner product space.

e |[nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + a2<f27g>?{

. <fag>7'l — <gaf>'H
« (f, f)u >0for f #0,(0,0)y =0

Induces a norm: || f|l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on X if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (@(z), d(y))

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on X if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (@(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on X if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (@(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on RY: k(z,y) = (z,Y)pa

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel

» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel
» ky(z,y) = v(d(2), (y) 1 = (VTP(T), VYY) 7

o Sum: k4 (a:,y) = k1 (a:,y) + k2 (a:,y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel
" by (2, y) = 7(0(2), (y))n = (V79(2), vTP(Y))n

o Sum: ki (z,y) = k1(z,y) + k2(x,y) is a kernel
1\Y

.k+(w,y):<[£§ ;] [Ey;]>’ﬂ1®%2

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel
» ky(z,y) = v(d(2), (y) 1 = (VTP(T), VYY) 7

o Sum: ky (z,y) = ky (z, 3(;3)3)+ ko (;J,E;))is a kernel
" Releny) = <[¢:($)] | Lb:(z)] >H1@H2

o Iski(x,y) — ko(z,y) necessarily a kernel?

Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel
» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: ky (a:,y) = k1 (a:,y) + k2 (a:,y) is a kernel
'k (2,9) = <[¢1($)] [¢1(y)]>
, ¢2(T) | ¢2(y) H,DHo
o Iski(xz,y) — ka2 (z,y) necessarily a kernel?
» Take k1 (z,y) =0, k2 (z,y) = 2y, ¢ # 0.
= Thenky(z,z) — k2 (z,2) = —22 < 0
= Butk(z,z) = [¢(z)7 = 0.

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Equivalently: kernel matrix K is PSD

k(zxi,21) k(xy,z2) ... k(z1,x,)
k(ze,x1) k(xe,z2) ... Kk(z2,2,)

k(xn, 1) k(z,,z2) ... k(z,,x,)

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))u

=1 j=

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a;d(z;),a;0(x;)) <Z a; d(x;) Zajgb T >

Z].j H

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))u

=1 j=

||
—
(]
8
©-

8
M-
£
©-

Q&R
~——

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;9(z;))n

=1 j=

||
—
(]
8
©-

8
M-
8
©-

Q&R
~——

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this

Some more ways to build kernels

o Limits: if koo (¢, y) = limy, o Ky (2, y) exists, ks is psd

Some more ways to build kernels

o Limits: if ko (a: y) = lim,, .o kn (2, y) exists, koo is psd

o nll_)IEOZZaZaJ (x;,25) >0

1=1 j=

Some more ways to build kernels

o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o0 Ky (x, y) exists, ks is psd

e Products: ky (223, y) = k1 (33, y)kZ (213, y) is psd

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (2, y) exists, ks is psd

e Products: ky (223, y) = k1 (33, y)kZ (213, y) is psd
= Let V ~ N(0,K;), W ~ N(0, K3) be independent
« Cov(V;W;, V;W;) = Cov(V;, V) Cov(Wi, Wj) = kx (2, ;)

= Covariance matrices are psd, so ky is too

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd

e Products: ky (223, y) = k1 (33, y)kZ (213, y) is psd

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0

.’L‘Ty

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (2, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0

:BTy—I—c

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o0 Ky (2, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (z,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0

(.’BTy 1 C)n

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0

(:BTy + c)'"', the polynomial kernel

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0

Exponents: Kexp (2, y) = exp(k(z,y)) is pd
+ Ky (2,9) = limy o0 SV L(z,)"

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x,y) exists, ks is psd
Products: kx (,y) = ki (x,y)ks (x, y) is psd
Powers: k,, (z,y) = k(x,y)™ is pd for any integern > 0
Exponents: kexp (2, y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd
ff: X = R ke(z,y) = f(@)k(z,y) f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd

£ = Rokg(e,9) = f(2)k(z,5) f(3) ispd
= Use the feature map ¢ — f(x)¢(x)

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd
ff: X = R ke(z,y) = f(@)k(z,y)f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)ks (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: kexp (2, y) = exp(k(z,y)) is pd
ff: X = R kf(z,y) = f(z)k(z,y) f(y) is pd

.’BTy

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd
ff: X =R Ep(z,y) = f(z)k(z,y) f(y) is po
1 7

o2

Some more ways to build kernels
Limits: if koo (2, y) = lim, o kn(x, y) exists, ks is psd
Products: kx (,y) = ki (x,y)kse (x, y) is psd
Powers: k, (x,y) = k(x,y)™ is pd for any integern > 0
Exponents: Kexp (2, y) = exp(k(z,y)) is pd
ff: X = R ke(z,y) = f(@)k(z,y) f(y) is pd

1
exp (—2xTy)
o

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o0 Ky (x, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(z,y)) is pd
o If f: X = R kg(z,y) = f(z)k(z,y)f(y) is pd

€X L €X —Z €X
p(— oz llal?) exp (oTy) exp (— o vl

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (2, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(z,y)) is pd
o If f: X = R ks(z,y) = fz)k(z,y) f(y) is pd

€X £ €X —Z €X
p(— oz lel?) exp (oTy) exp (— o vl

1
= exp (— 5 [llel? — 22Ty + [ly]*])

Some more ways to build kernels
o Limits: if koo (¢, y) = limy, o Ky (x, y) exists, ks is psd
e Products: kx (x,y) = ki (x,y)ks (x,y) is psd
o Powers: k,(x,y) = k(x,y)"™ is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(z,y)) is pd
o If f: X = R kg(z,y) = f(z)k(z,y)f(y) is pd

€X L €X —Z €X
p(— oz llel?) exp (oTy) exp (— o vl

2
lz—yl

202

— exp () the Gaussian kernel

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2%) R’

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2%) R’

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?
o Classifier based on linear f(z) = (w, ¢(z))%

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2%) R’
e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?
o Classifier based on linear f(xz) = (w, ¢(x))%

o f(-)isthe function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point «

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2%) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?
o Classifier based on linear f(z) = (w, ¢(x))%

o f(-)isthe function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point «

e Elements of ‘H correspond to functions, f : X — R

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2%) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?
o Classifier based on linear f(z) = (w, ¢(x))%

o f(-)isthe function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point «

e Elements of H correspond to functions, f : X — R
e Reproducing prop.: f(x) = (f(-),¢(z))y for f € H

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (¢(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(x, -) = ¢(x)

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (¢(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(x, -) = ¢(x)

e k(z,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)3, from (k(z,-), k(y, *))x, = k(z,y)

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hoy = span({k(z,-) : ¢ € X'})

= Define (-,)9, from (k(z,-), k(y, *))x, = k(z,y)

= Take H to be completion of Hy in the metric from (-, *) 7,

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)3, from (k(z,-), k(y, *))x, = k(z,y)
= Take H to be completion of g in the metric from (-, '>7'lo

= Get that the reproducing property holds for k(a:,) in H

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)3, from (k(z,-), k(y, *))x, = k(z,y)
= Take H to be completion of g in the metric from (-, '>7'lo

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)3, from (k(z,-), k(y, *))x, = k(z,y)
= Take H to be completion of g in the metric from (-, '>7'lo

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

e Theorem: kis psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels
k(z,y) =z yon X = R?

|ff Zaz wzay then f() [Z;ﬁl a’iwi]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[fll = /i1 Xy aiash(zi 2p) = |20 aizi

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [lz — y[|*)

o H is infinite-dimensional

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional

@@%ﬁ

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [z — y[*)

o H is infinite-dimensional

e Functions in ’H are bounded

f(@) = (fk(z,)s < v/k(@, @) || fllae = [fllo

@@%ﬁ

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [z — y[*)

o H is infinite-dimensional
e Functions in ’H are bounded
f(z) = (£, k(z,))n < Vk(z,z)|| fllae = || fllo
e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,-) — k(@',) |la]| £l
\k(z +1,-) — k(z,)||2, = 2 — 2k(z,z + 1) = 2 — 2exp (—ﬂ)

0'

M%A

More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional
e Functionsin ’H are bounded:

f(@) = (fk(z,)n < v/k(@, @) || fllae = [fllo

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,) — k(@') |lac]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp(I)

0'

e Can say lots more with Fourier properties

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fE'H n i=1

Linear kernel gives normal ridge regression:

f(z) = z; —argmmZ'w zi — yi)? + w2

weR? 1=1

Nonlinear kernels will give nonlinear regression!

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f?

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,)},
H | its orthogonal complement in H

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,-)}I,
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1L € H.

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, fL € H.
o f(@i) = (fx + fi, k(@i))u = (Fx, k(zi;))u

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, fL € H.
o f(@i) = (fx + fi, k(@i))u = (Fx, k(zi;))u
o |1£15, = N fx 113, + 1 £ 15,

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,)},
‘H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1L € H.
o f(mi) = (fx + fi, k(@i))u = (Fx, k(zi;))u
o |1 £l = N fx13, + 1 £L13,

e Minimizer needs f; = 0, and sof - Z?:l Oéz‘k(wia)

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen N3

How to find f? Representer Theorem: f = 2?21 &ik(«’ﬁz’a)

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

i: (i: a;k(zi, ;) — yz) = 27_1: ([Kal; — yi)2

1

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

Z (Z a;k(x;, ;) — yz) Z ([Kal; = || Ko — y||?
i=1 \j=1

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fen M4

How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

Z (Z a;k(x;, ;) — yz) Z ([Kal; = || Ko — y||?
i=1 \ j=1

= aTK2a — 2y Ka+y'y

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

Z (Z a;k(x;, ;) — yz) Z ([Kal; = || Ko — y||?
i=1 \j=1

= aTK2a — 2y Ka+y'y

— Z Z Ozik(fbi, ZEj)Otj

i=1 j=1

k(z;,)

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

Z (Z a;k(x;, ;) — yz) Z ([Kal; = || Ko — y||?
i=1 \j=1

= aTK2a — 2y Ka+y'y

= Zn: zn:aik(azi,a:j)aj =o' Ko

i=1 j=1

k(z;,)

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fer Mo
How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

& =argmina' K?a —2y"' Ka +y'y+ nia' Ko

acR™

Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fen M4
How to find f? Representer Theorem: f = 2?21 &ik(wz’a)

& =argmina' K?a —2y" Ka +y'y+ nia' Ko
acR”
— argmina' K(K + n\l)a —2y' Ko

acR"

Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fer Mo
How to find f? Representer Theorem: f = 2?21 &ik(wz‘a)

& =argmina' K?a —2y" Ka +y'y+ nia' Ko

aER™

— argmina' K(K + n\l)a —2y' Ko

acR"

Setting derivative to zero gives K(K + nAIl)a = Ky,
satisfied by & = (K + nAI) 1y

Other kernel algorithms

Representer theorem applies if R strictly increasing:

min L(f(z1),---, f(zn)) + R(|| flln)

feH
Classification algorithms:
= Support vector machines: L is hinge loss
= Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis

Many, many more...

Some theory

e |f H universal, f € H can approximate any continuous func
f;(f;(£ y d,u)du(y) > () for all nonzero finite

signed measures U

= True for Gaussian, many other common kernels (but no
finite-dimensional ones!)

= Norm may go to oo as approximation gets better

Some theory

e |f H universal, f € H can approximate any continuous func
f;(f;(£ y d,u)du(y) > () for all nonzero finite

signed measures U

= True for Gaussian, many other common kernels (but no
finite-dimensional ones!)

= Norm may go to oo as approximation gets better

e If RKHS norm is small, can learn quickly
= e.g. Rademacher complexityof {f € H : || f|lx < B}

is at most \/ sup,y k(z, x)

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — bay7 forlarge d

Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — bay7 forlarge d

e Provably slower than deep learning for a few problems
= e.g. tolearn a single ReLU, max(0, w'), need norm

exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180

Relationship to deep learning

e Deep models usually end as fr(z) = w} fr—1(z)

Relationship to deep learning
e Deep models usually end as f1(z) = w] fr—1(z)

e Can think of as learned kernel, () fr- 1()fL—l(y)

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr—1(x)fr—1(y)

e Does this gain us anything?

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr—1(x)fr—1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr—1(x)fr—1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis

o SVMs with NTK can be great on small data

Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr—1(x)fr—1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis

o SVMs with NTK can be great on small data

= |nspiration: learn the kernel model end-to-end
o Ongoing area; good results in two-sample testing,
GANSs, density estimation, meta-learning, semi-
supervised learning, ...

Mean embeddings of distributions
e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 EXNIP’ k(Xa)>’H

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 IE‘::XN]P’ k(Xa)>’H

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 IE‘::XN]P’ k(Xa)>’H

= Last step assumed e.g. E /k(X, X) < oo

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 IE‘::XN]P’ k(Xa)>’H

= Last step assumed e.g. E /k(X, X) < oo
e Okay. Why?

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 IE‘::XN]P’ k(Xa)>’H

= Last step assumed e.g. E /k(X, X) < oo

e Okay. Why?
= One reason: ML on distributions [Szab6+ JMLR-16]

https://arxiv.org/abs/1411.2066

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa)>'H — <f7 IE‘:"XN]P’ k(Xa)>’H

= Last step assumed e.g. E /k(X, X) < oo

e Okay. Why?
= One reason: ML on distributions [Szab6+ JMLR-16]

= More common reason: comparing distributions

https://arxiv.org/abs/1411.2066

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko|l#

= sup (f,up — 1Q)n
|l <1

— “szuIil Ex-p f(X) — Ey~q f(Y)

e Lastlineis Integral Probability Metric (IPM) form

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko|l#

= sup (f,up — 1Q)n
|l <1

— “szuIil Ex-p f(X) — Ey~q f(Y)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko|l#

= sup (f,up — 1Q)n
|l <1

— “szuIil Ex-p f(X) — Ey~q f(Y)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko|l#

= sup (f,up — 1Q)n
|l <1

— “szuIil Ex-p f(X) — Ey~q f(Y)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

HHHAT T — | HH

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

Last line is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

Last line is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

fr(t) o (up — po, k(t,-))n = Ep k(t, X) — Eq k(¢, Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko|l#

= sup (f,up — 1Q)n
|l <1

— ”szuIil Ex-p f(X) — Ey~q f(Y)

e Lastlineis Integral Probability Metric (IPM) form
e fis called “witness function” or “critic”: high on IP, low on QQ

fr(t) o (pp — pq, k(t,-))n = Ep k(t, X) — Eq k(t,Y)

’\

—_—-

N e T —

\———5
y
“—

~

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ

f(t) o< {pp — po, k(t,))n = Ep k(t, X) — Eq k(t,Y)

Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ
fH(t) o< {pp — pq, k(¢, <)) = Ep k(t, X) — Eq k(2,Y)

More!

Foundations: Berlinet and Thomas-Agnan, RKHS in
Probability and Statistics

Hardcore theoretical details: Steinwart and Christmann,
Support Vector Machines

Close connections to Gaussian processes [Kanagawa+ 'GPs and
Kernel Methods' 2018]

Mean embeddings: survey of [Muandet+ 'Kernel Mean
Embedding of Distributions']

The practical sessions! Some pointers in there

https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

