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potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

¢ will live in a reproducing kernel Hilbert space
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Hilbert spaces

e A complete (real erecomptex) inner product space.

e |[nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + a2<f27g>?{

. <fag>7'l — <gaf>'H
« (f, f)u >0for f #0,(0,0)y =0

Induces a norm: || f|l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)
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e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X X X — Risakernel on X if there exists a Hilbert
space H and a feature map ¢ : X — H so that

k(z,y) = (@(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

e Linear kernel on RY: k(z,y) = (z,Y)pa
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Building kernels from other kernels

e Scaling:ify > 0, ky(z,y) = vk(x,y) is a kernel
» ky(z,y) = v(@(2), (y) 1 = (VTP(T), VTP(Y)) 7

o Sum: ky (a:,y) = k1 (a:,y) + k2 (a:,y) is a kernel
'k (2,9) = <[¢1($)] [¢1(y)]>
, ¢2(T) | ¢2(y) H,DHo
o Iski(xz,y) — ka2 (z,y) necessarily a kernel?
» Take k1 (z,y) =0, k2 (z,y) = 2y, ¢ # 0.
= Thenky(z,z) — k2 (z,2) = —22 < 0
= Butk(z,z) = [¢(z)7 = 0.



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1




Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Equivalently: kernel matrix K is PSD

k(zxi,21) k(xy,z2) ... k(z1,x,)
k(ze,x1) k(xe,z2) ... Kk(z2,2,)

k(xn, 1) k(z,,z2) ... k(z,,x,)



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))u

=1 j=



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a;d(z;),a;0(x;)) <Z a; d(x;) Zajgb T >

Z].j H



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))u

=1 j=

||
—
(]
8
©-

8
M-
£
©-

Q&R
~——




Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;9(z;))n

=1 j=

||
—
(]
8
©-

8
M-
8
©-

Q&R
~——




Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd



Positive definiteness

o Asymmetric function k : X X X — Ris positive semi-definite
(psd) if forallm > 1,a1,...,a, € R", z1,...,2, € X",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this
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o Limits: if koo (¢, y) = limy, o Ky (2, y) exists, ks is psd

e Products: ky (223, y) = k1 (33, y)kZ (213, y) is psd
= Let V ~ N(0,K;), W ~ N(0, K3) be independent
« Cov(V;W;, V;W;) = Cov(V;, V) Cov(Wi, Wj) = kx (2, ;)

= Covariance matrices are psd, so ky is too
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e Recall original motivating example with

X=R ¢)=>1,z,2%) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z2y?
o Classifier based on linear f(z) = (w, ¢(x))%

o f(-)isthe function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point «

e Elements of H correspond to functions, f : X — R
e Reproducing prop.: f(x) = (f(-),¢(z))y for f € H
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Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS H, and amap ¢ : X — H where

" k(z,y) = (¢(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(x, -) = ¢(x)

e k(z,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-, )3, from (k(z,-), k(y, *))x, = k(z,y)
= Take H to be completion of g in the metric from (-, '>7'lo

= Get that the reproducing property holds for k(a:, ) in H

= Can also show uniqueness

e Theorem: kis psd iff it's the reproducing kernel of an RKHS



A quick check: linear kernels
k(z,y) =z yon X = R?

|ff Zaz wzay then f( ) [Z;ﬁl a’iwi]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[ fll = /i1 Xy aiash(zi 2p) = |20 aizi
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More complicated: Gaussian kernels
1
k(z,y) = exp(5 [z — y[*)

o H is infinite-dimensional
e Functions in ’H are bounded
f(z) = (£, k(z, ))n < Vk(z,z)|| fllae = || fllo
e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,-) — k(@', ) |la]| £l
\k(z +1,-) — k(z,)||2, = 2 — 2k(z,z + 1) = 2 — 2exp (—ﬂ)

0'
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More complicated: Gaussian kernels
1
k(z,y) = exp(5 [l — y[*)

o H is infinite-dimensional
e Functionsin ’H are bounded:

f(@) = (fk(z,)n < v/k(@, @) || fllae = [ fllo

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,) — k(@' ) |lac]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp( I )

0'

e Can say lots more with Fourier properties
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f = argmin — 3 (f(1) — w)? + Al FI2

fE'H n i=1

Linear kernel gives normal ridge regression:

f(z) = z; —argmmZ'w zi — yi)? + w2

weR? 1=1

Nonlinear kernels will give nonlinear regression!



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f?



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem



Kernel ridge regression

f = argmin — 3 (f(a1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;, )},
H | its orthogonal complement in H



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;,-)}I,
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1L € H.



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;, )},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, fL € H.
o f(@i) = (fx + fi, k(@i ))u = (Fx, k(zi;))u



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;, )},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, fL € H.
o f(@i) = (fx + fi, k(@i ))u = (Fx, k(zi;))u
o |1£15, = N fx 113, + 1 £ 15,



Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fen M4

How to find f ? Representer Theorem

o Let Hx = span{k(z;, )},
‘H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1L € H.
o f(mi) = (fx + fi, k(@i ))u = (Fx, k(zi;))u
o |1 £l = N fx13, + 1 £L13,

e Minimizer needs f; = 0, and sof - Z?:l Oéz‘k(wia )
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Kernel ridge regression

f = argmin — 3 (f(1) — w)? + Al FI2

fer Mo
How to find f? Representer Theorem: f = 2?21 &ik(wz‘a )

& =argmina' K?a —2y" Ka +y'y+ nia' Ko

aER™

— argmina' K(K + n\l)a —2y' Ko

acR"

Setting derivative to zero gives K(K + nAIl)a = Ky,
satisfied by & = (K + nAI) 1y



Other kernel algorithms

Representer theorem applies if R strictly increasing:

min L(f(z1),---, f(zn)) + R(|| flln)

feH
Classification algorithms:
= Support vector machines: L is hinge loss
= Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis

Many, many more...
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Some theory

e |f H universal, f € H can approximate any continuous func
f;( f;( £ y d,u )du(y) > () for all nonzero finite

signed measures U

= True for Gaussian, many other common kernels (but no
finite-dimensional ones!)

= Norm may go to oo as approximation gets better

e If RKHS norm is small, can learn quickly
= e.g. Rademacher complexityof {f € H : || f|lx < B}

is at most \/ sup,y k(z, x)
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Limitations of kernel-based learning

e Generally bad at learning sparsity
= eg f(x1,...,24) = 3xy — bay7 forlarge d

e Provably slower than deep learning for a few problems
= e.g. tolearn a single ReLU, max(0, w' ), need norm

exponential in d [Yehudai/Shamir NeurlPS-19]

= Also some hierarchical problems, etc [Kamath+ COLT-20]


https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2003.04180
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Relationship to deep learning
e Deep models usually end as fr(z) = w} fr—1(z)
e Can think of as learned kernel, k(z,y) = fr—1(x)fr—1(y)

e Does this gain us anything?
= Random nets with trained last layer (NNGP) can be decent

= As width — 00, nets become neural tangent kernel
o Widely used theoretical analysis

o SVMs with NTK can be great on small data

= |nspiration: learn the kernel model end-to-end
o Ongoing area; good results in two-sample testing,
GANSs, density estimation, meta-learning, semi-
supervised learning, ...
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Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)x

EXNIP’ f(X) — EXNIP’ <f7 k(Xa )>'H — <f7 IE‘:"XN]P’ k(Xa )>’H

= Last step assumed e.g. E /k(X, X) < oo

e Okay. Why?
= One reason: ML on distributions [Szab6+ JMLR-16]

= More common reason: comparing distributions


https://arxiv.org/abs/1411.2066
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Maximum Mean Discrepancy

MMD(P,Q) = ||up — ko |l#

= sup (f,up — 1Q)n
| Flly <1

= o xer &)~ Fra AY)

e Lastlineis Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on IP, low on QQ
fH(t) o< {pp — pq, k(¢, <)) = Ep k(t, X) — Eq k(2,Y)



More!

Foundations: Berlinet and Thomas-Agnan, RKHS in
Probability and Statistics

Hardcore theoretical details: Steinwart and Christmann,
Support Vector Machines

Close connections to Gaussian processes [Kanagawa+ 'GPs and
Kernel Methods' 2018]

Mean embeddings: survey of [Muandet+ 'Kernel Mean
Embedding of Distributions']

The practical sessions! Some pointers in there


https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

