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Intro: conditionally invariant representations

» Self-driving car tries to predict its location

» Starts in the morning

> Finishes in the evening

> . ..learns to predict location from time of day

Distribution shift: car starts in the afternoon

» ...and makes lots of errors



Intro: conditionally invariant representations

time of day

\

Same form as a common domain invariance objective: J/ @
features 1L domain ID | car position  image features

Idealized solution to this distribution shift problem:

» predictions should be conditionally independent of time
given the X7

Same form as common fairness criterion (equalized odds):
predictions L protected attribute |

Problem: conditional dependence is hard to measure!
» Discrete Y': check dependence of X and 7 for each Y value
» On each minibatch during training. ..

» Continuous }': prior work runs regression on each minibatch



Warmup: detecting unconditional dependence

v~ N(0,1)

&1,& ~ N(0,1) i.i.d. noise
X = +&)
Z=Y+&+&

» X and Z are uncorrelated

f(X) = X witness 9(Z) = Z? witness
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Warmup: detecting unconditional dependence

v~ N(0,1)

&1,& ~ N(0,1) i.i.d. noise
X = +&)
Z =Y +&+E&

» X and Z are uncorrelated

» One way to detect dependence: we can find
correlated nonlinear functions f(X) and ¢g(7)

fX) =Z? witness

=X witness

9(2)

20

10

0 10 =5 5

0
X z

X 1 Z if and only if all square-integrable
functions f(X) and ¢(Z) are uncorrelated

Correlation: 0.0

20

v:-'a%.' o o °

“s<e .

e .9::-

o

f(X)




Warmup: detecting unconditional dependence

>

>

If there aren't any correlated f(X) and ¢(Z2), 04

then X and Z are independent
How to check al enough nonlinear functions? 0.2

Check f(X) and g(Z) from kernel spaces
(RKHSes): f(X) = Zai k(X, X;) 00| - rrssionites s Nl !
From RKHS properties: Cov (f(X),g(Z)) = {f,Cxz g) for the linear operator

Cxz = E[k(Xv ) ® I‘(Z )} - E[k(X7 )} ® EU‘(Z )]

> With linear kernels, C'x 7 is just the cross-covariance matrix E[X 7 "] — E[X]E[Z]"
> If Cxz =0, all f(X) and ¢g(Z) in the RKHSes are uncorrelated
» If our kernels are “rich enough” (Gaussian is enough), this implies independence

Hilbert-Schmidt Independence Criterion: HSIC (X, Z) = ||Cxz||3s = 0iff Cxz =0
> Can estimate with HSIC(X, Z) = 21T (HKxxH ® K72)1, where H is “centring matrix”

Deep nets with features Xy ~independent of Z: m(;n loss(p(X), V) + VH/SE((MX), 7Z)



Detecting conditional dependence
v o~ N(0,1)
&1,& ~N(0,1) ii.d. noise
X =(V+&)
Z =Y +&+&

» X and 7 are dependent

» X and Z are conditionally dependent given Y

(through &)

f(X) = X witness

9(Z,Y) = Z? witness

0 10 -5 0 5
X z

X1 Z |V if and only if all f(X) are uncorrelated
with all ¢(Z,v) —E[g(Z,7) | v'] [Daudin, 1980]

Correlation: 0.0
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CIRCE: Conditional Independence Regression CovariancE

> Want to check covariance of f(X) and ¢°(Z.Y) =g(Z,Y)=E[g(Z,Y) | V]
> ¢°(Z,Y") has mean zero, so they're uncorrelated iff E[f(X) ¢°(Z,Y)] =0

» The CIRCE operator gives <f,C’§(Z‘),g> — E[f(X) ¢°(Z,Y)], using
Cg(zlw = E[k'(X«, ) ® (k((Z, Y),)—E[k(Z,Y),)] 3])]

» CIRCE(X,Z|VY) = ||C§(Z|Y||%{S =0iff X1L.Z |V, if kernels are “rich enough”

» Special case: if £((Z,Y),(Z",Y")) =k(Z,Z") (Y. Y"), we get
Ckzy =ERX,)®@K(Y.)® (k(Z,) = pzpy (V)]

where 17, is the conditional mean embedding of / given V'



CIRCE estimator

> Want squared norm of C< |, = E[k(X,-) ® ® (k(Z,) = pzpy (V)]
> First, estimate conditional mean embedding i, on a dataset {(Z,,)" )},

> Use kernel ridge regression: inputs }', RKHS-valued labels (7, -)
> Use this to estimate the conditionally-centred kernel function

K((Z,Y),(Z' ) = (k(Z,) = papy (V), K(Z, ) = fuapye (V1))
~ k(2,7 =Blk(Z,2) |V =Ek(Z,2")|Y+Ek(Z,2") ]|V,

» While training ¢(X), for each batch {(¢(X;), Z;,V )} E -

i=1"
> Get (Kxx)is = k(¢(X0), 6(X;),  (Kgz)i = k((2,Y),(2'.Y")
> Regularize with CIRCE = B(B;_l)lT (KXX o o f{"z"z)l

Benefits of CIRCE:
> As B, M — oo, CIRCE — 0 iff ¢(X)LLZ | V7; rate is known (see paper)
> and /%, , don't depend on ¢

» Can precompute them, so only need k(¢(X;), »(X,)) for each new ¢
> Separates (small) batch size B and (big) regression training size M: better convergence



Experiments

> dSprites dataset [Matthey et al., 2017]:
2D shapes in different locations

» Task: predict vertical position Y’
But be invariant to horizontal position 7
Z and Y have strong dependence in training

horizontal pos.

F®

Yﬁ&cal pos. image features

> Compare to HSCIG Gdf{Zan et al., 2022] (also kernel-based) A+ € 4
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Discussion

time of day

.

car position  image features

» CIRCE: a measure of conditional independence for feature learning
» It works with continuous variables and in deep learning settings

» Applications: domain shift invariance, fairness

arXiv paper
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