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Intro: conditionally invariant representations

» Self-driving car tries to predict its location

» Starts in the morning

> Finishes in the evening

> . ..learns to predict location from time of day

Distribution shift: car starts in the afternoon

» ...and makes lots of errors



Intro: conditionally invariant representations

Idealized solution to this distribution shift problem: time of day
» predictions should be conditionally independent of time
given the D XALZ | \
Same form as a common domain invariance objective: \ @
features 1L domain ID | car position  image features

Same form as common fairness criterion (equalized odds):
predictions L protected attribute |

Problem: conditional dependence is hard to measure!

» Discrete V: check dependence of X and Z for each V" value
» On each minibatch during training. ..

» Continuous Y : classical methods need strong assumptions
> e.g. joint Gaussianity (then check partial correlation)



Warmup: detecting unconditional dependence

v~ N(0,1)

&1,& ~ N(0,1) i.i.d. noise
X = +&)
Z=Y+&+&

» X and Z are uncorrelated

f(X) = X witness 9(Z) = Z? witness
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Warmup: detecting unconditional dependence

v~ N(0,1)

&1,& ~ N(0,1) i.i.d. noise
X = +&)
Z =Y +&+E&

» X and Z are uncorrelated

» One way to detect dependence: we can find
correlated nonlinear functions f(X) and ¢g(7)

fX) =Z? witness

=X witness

9(2)
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Warmup: detecting unconditional dependence

>

>

If there aren't any correlated f(X) and ¢(Z2), 04

then X and Z are independent
How to check al enough nonlinear functions? 0.2

Check f(X) and g(Z) from kernel spaces
(RKHSS) f(X) = Zai k(X7XZ) 0.0 - e et L0 00 = 0
From RKHS properties: Cov (f(X),g(Z)) = {f,Cxz g) for the linear operator

Cxz = E[k(Xv ) ® I‘(Z )} - E[k(X7 )} ® EU‘(Z )]

> With linear kernels, C'x 7 is just the cross-covariance matrix E[X 7 "] — E[X]E[Z]"
> If Cxz =0, all f(X) and ¢g(Z) in the RKHSes are uncorrelated
» If our kernels are “rich enough” (Gaussian is enough), this implies independence

Hilbert-Schmidt Independence Criterion: HSIC (X, Z) = ||Cxz||3s = 0iff Cxz =0
> Can estimate with HSIC(X, Z) = 21T (HKxxH ® K72)1, where H is “centring matrix”

Deep nets with features Xy ~independent of Z: m(;n loss(p(X), V) + VH/SE((MX), 7Z)



Detecting conditional dependence

Vv ~N(0,1)

&1,& ~N(0,1) ii.d. noise
X =0 +&)
Z =Y +&+&

» X and 7 are dependent

» X and Z are conditionally dependent given Y
(through &)

Correlation: 0.0
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How do we characterize conditional (in)dependence?

> Start by just conditioning everything on V: X 1.7 | V" iff
forall fy € L% and ¢, € L%,

Exz[fy(X) oy (2) [ V] = Ex[fv (X) | V] Ez[gv(2) [ V] V-as.
» Equivalent: X117 |V iff for all f € L%, and g € L%,
Exz[f(X, ) 9(Z, ) | V] = Ex[f(X,0) [ V]Ez[g(Z,0) [ V] V-as.

» Equivalent (Daudin 1980): X 1.7 | V" iff

forall f € L% such that Ex[f(X,Y)|V]=0 V-as.

and all g € L%, such that Ez[9(Z,Y) | Y] =0 V-as,

E[f(X,1)(Z,)] =0

» Equivalent: X117 |V iff forall f € L%, g € L%,

E[/(X) (s(2,Y) = Ez[o(2,7) | V])] =0



Detecting conditional dependence
v o~ N(0,1)
&1,& ~N(0,1) ii.d. noise
X =(V+&)
Z =Y +&+&

» X and 7 are dependent

» X and Z are conditionally dependent given Y

(through &)

f(X) = X witness

9(Z,Y) = Z? witness

0 10 -5 0 5
X z

X1 Z |V if and only if all f(X) are uncorrelated
with all ¢(Z.V) —E[g(Z.}) | V] [Daudin 1980]

Correlation: 0.0
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CIRCE: Conditional Independence Regression CovariancE

> Want to check covariance of f(X) and ¢°(Z.Y) =g(Z,Y)=E[g(Z,Y) | V]
> ¢°(Z,Y") has mean zero, so they're uncorrelated iff E[f(X) ¢°(Z,Y)] =0

» The CIRCE operator gives <f,C’§(Z‘),g> — E[f(X) ¢°(Z,Y)], using
Cg(zlw = E[k'(X«, ) ® (k((Z, Y),)—E[k(Z,Y),)] 3])]

» CIRCE(X,Z|VY) = ||C§(Z|Y||%{S =0iff X1L.Z |V, if kernels are “rich enough”

» Important special case: if k((Z,V),(Z/.,Y")) =k(Z,Z") E(Y,Y"), we get
Ckzy =ERX,)®@K(Y.)® (k(Z,) = pzpy (V)]

where 17, = E[k(Z,-) | V'] is the conditional mean embedding of 7 given )’



CIRCE estimator

> Want squared norm of C< |, = E[k(X,-) ® ® (k(Z,) = pzpy (V)]
> First, estimate conditional mean embedding i, on a dataset {(Z,,)" )},

> Use kernel ridge regression: inputs }', RKHS-valued labels (7, -)
> Use this to estimate the conditionally-centred kernel function

K((Z,Y),(Z' ) = (k(Z,) = papy (V), K(Z, ) = fuapye (V1))
~ k(2,7 =Blk(Z,2) |V =Ek(Z,2")|Y+Ek(Z,2") ]|V,

» While training ¢(X), for each batch {(¢(X;), Z;,V )} E -

i=1"
> Get (Kxx)is = k(¢(X0), 6(X;),  (Kgz)i = k((2,Y),(2'.Y")
> Regularize with CIRCE = B(B;_l)lT (KXX o o f{"z"z)l

Benefits of CIRCE:
> As B, M — oo, CIRCE — 0 iff ¢(X)LLZ | V7; rate is known (see paper)
> and /%, , don't depend on ¢

» Can precompute them, so only need k(¢(X;), »(X,)) for each new ¢
> Separates (small) batch size B and (big) regression training size M: better convergence



Experiments
horizontal pos.

> dSprites dataset [Matthey et al., 2017]:
2D shapes in different locations

But be invariant to horizontal position 7

Z and Y have strong dependence in training vertical pos. image features
» Compare to HSCIC [Quinzan et al., 2022] (also kernel-based)

and GCM [Shah & Peters, 2020] (correlation-based)

» Task: predict vertical position \
O—®

» CIRCE wins!
A. CIRCE B. HSCIC C. GcM
0.150 —— in-domain 0.150 —— in-domain 0.150
00D 00D
0125 ... tainedonoop 0125 ... tainedonoop 0125
#0100 —— in-domain
1 0.075 oop
%] = trained on OOD
=
0.050
0.025
0.000
0 100 10t 102 103 0 10t 102 103 0 10-2 10-1 10°
regularization strength y regularization strength y regularization strength y



CIRCE discussion

time of day

.

car position  image features

arXiv paper

CIRCE: a measure of conditional independence for feature learning

It works with continuous variables and in deep learning settings
Applications: domain shift invariance, fairness o
Ongoing: learn kernels on ¥ (straightforward) and Z (harder) (code link inside)

Next: testing whether X 1l 7 |

vvyvyVvVvyy



Testing

» Learning with a CIRCE regularizer tries to learn a model where X 1l 7 |
> .. .did it work?

» Or: lots of other interesting conditional independence questions to ask!
» |s car insurance price (X) L neighbourhood’s racial makeup (Z) | driver risk (1)?

» We'll take a null hypothesis significance testing approach
> fo: X1LZ |V, alternative hypothesis is just “not that”
> Assuming good-enough kernels, equivalent to ask whether CIRCE(X,Z | V') = 0:

s ||E k(X ) @ @ (K(Z.-) = iy ( ))]HQZO?

> Problem: estimating the conditional mean, ju, ;- (1), is really hard!

» Best-case minimax rate is O(l/m”“); can be arbitrarily slow (Li et al. 2022)

> Rate for “everything else given a jizy" is O(1/y/n)



Bias

> What happens when fizy = pzy + Azjy, with Az # 0, when X 1LZ [ V7

[E[k0x ) @ kv ) @ (k(Z.) =y ) = Ay ()] ||
= B @ kY. ) @ ((Z.) = iy ()] ~E X ) @ k(Y. @ Ay (]|
0, since X L7 |
=E[k(X, X') (Azy (V), Az (V) ]
likely big if is big

> If we estimated the regression wrong, it doesn’t matter how many samples we get for the
rest of the estimator: CIRCE will be big
» Understanding how big is hard



(Split)KCl

» When used during training a deep model, it helped to only use one regression

» For testing, this is less relevant

> Instead of the CIRCE operator, the KCI operator (Zhang et al. 2012) is
CXoy =E[(K(X,) —pxp (V) ® ®@ (k(Z,-) = pzy (V)]
> C)Ifgll =0 iff X1 Z | V; with incorrect regressions, bias becomes

E[{Ax)y (X), Ax)y (X)) (Azpy (V), Az (V)]

> Can reduce this by replacing (A, (X), Axpy (X')) with (AQ)(X), AQ) (X))

» Compute by using two different regressions: split the data used to train it
> The regression is really hard, so it's annoying to not use all the data
> .. .but the regression is so hard that losing half the data doesn't hurt that much

> Everything still works out since other one is centred (like CIRCE)

> Can even use different kernels (not necessarily universal!) — any arbitrary functions
> Simple kernels might help: faster convergence, still debiasing



Testing with SplitKCl

» Zhang et al. (2012) tested based on a gamma approximation to the null distribution
» That approximation can’t cope with the bias when mean estimation is poor

unbalanced data regime standard regime
100 4o 100 g

0.05)

—— KCI (wild)

----- KCI (gamma)
—— SplitKCl (wild)
----- SplitkCl (gamma)
—— CIRCE (wild)

----- CIRCE (gamma)

Type | error (a

200400600800.000 20040060080(.000
my; my,
» Instead, use wild bootstrap
» Approximate null distribution by element-wise multiplying the centred kernel matrix by gq ',

q a vector of random signs
> Can prove it works (asymptotically), as long as we have enough regression samples



Better Type | error control
» On synthetic Gaussian data:

unbalanced data regime

109 +

0.05)

Type | error (a

600 800 1000
my;

200 400

» Indications of similar results on real car insurance data

standard regime

— Kl
—— SplitkCl
—— CIRCE

200

400

600 800 1000
my,



More powerful than competitors

> Different synthetic task; left side is n = 100,

in

s

o

g

- -1 4

S 10 101 ]

3

o

S

2
e
1.0 1.0 Kl

_ —— splitkcl
308 0.8 Gem

< — RBPT2'
306 061

=

5 ——
3 0.4 0.4
.

S

,_o.z«f_/—‘ 0.2

—_——  —

0.0 oo{——

unbalanced data regime

standard regime

—T T T
200 400 600 800 1000
my;

—T T T T
200 400 600 800 1000
my;

right is n = 200

0.05)

Type | error (a

102

1.04

0.05)

Type Il error (a:

0.0 4

10-1 4

unbalanced data regime

standard regime

===

0.8

0.6 4

0.4+

0.2+

10*1 4
‘\\/
o T .
1.0
0.8
— Kl
061 /V\'/— Splitkcl
GeM
\/\/—/ 041 — RBPT2'
02
0.0

T T
200 600 1000 2000
my;

T T
200 600 1000 2000
my;



Discussion

» CIRCE: a measure of conditional independence for feature learning

» Works with continuous variables, in deep learning settings
> Applications to fairness, domain shift, ...
> Ongoing extension: learn kernels on Y (straightforward) and/or Z (harder)

» Unfortunately, CIRCE is really bad at testing
> Bias seems to be a big factor for it and its predecessor KCl

> SplitKCl: an “in-between” statistic based on data splitting
» Debiasing with data splitting
> Want to use a lot more data for regression than rest of test
> Good setting: limited (X, Z, ") triples, but lots of (X,}") and (Z,Y") pairs
> Wild bootstrap for estimating the test threshold



Characterizing conditional (in)dependence — proof sketch

VfeLky,9€Llyy, Elfg|Y]=E[f|Y]E[g|Y] (A)
{ [Daudin 1980]
VielLky, €L}y st.E[f|Y]=0=E[g|V], E[fg]=0 (B)
A) = (B), (C): Just apply (A) to f and j, RHS becomes 0

> (
> (B) = (A):

> Choose f(X,V) = f(X,7) = E[f(X,) | Y] and §(2,7) = 9(Z,7) = Elg(Z,)) | V],
> 0=E[f5] =Ev [Elf7| V]| =Ev [Elfg| V] -EIf | VIEs | V]|

> Letting ¢ include an indicator on sets of )", implies must hold almost surely in V'
> Same basic idea works for uncentred f € L% and centred g € L%

» Slightly more argument to drop the Y in f



