
Conditional independence measures
for fairer, more reliable models

Danica J. Sutherland
UBC + Amii; she/her

based on joint work with:

Roman Pogodin Namrata Deka Antonin Schrab Yazhe Li Victor Veitch Arthur Gretton
Gatsby, UCL → McGill + Mila UBC → CMU Centre for AI + Gatsby, UCL Gatsby, UCL + DeepMind UChicago + Google Gatsby, UCL + DeepMind

(both) (CIRCE) (SplitKCI) (both) (CIRCE) (both)

BIRS workshop: Statistical Aspects of Trustworthy Machine Learning, Feb 2023

CIRCE is arXiv:2212.08645 (ICLR 2023, “notable: top 5%”)

SplitKCI is new work in submission; on arXiv soon. . .

https://www.birs.ca/events/2024/5-day-workshops/24w5284/
https://arxiv.org/abs/2212.08645

Intro: conditionally invariant representations

▶ Self-driving car tries to predict its location

▶ Starts in the morning

▶ Finishes in the evening

▶ . . . learns to predict location from time of day

Distribution shift: car starts in the afternoon

▶ ...and makes lots of errors

Intro: conditionally invariant representations

Idealized solution to this distribution shift problem:

▶ predictions should be conditionally independent of time
given the car position: 𝑋⊥⊥𝑍 | 𝑌

Same form as a common domain invariance objective:
features⊥⊥ domain ID | true label

Same form as common fairness criterion (equalized odds):
predictions⊥⊥ protected attribute | true label

Problem: conditional dependence is hard to measure!
▶ Discrete 𝑌 : check dependence of 𝑋 and 𝑍 for each 𝑌 value

▶ On each minibatch during training. . .

▶ Continuous 𝑌 : classical methods need strong assumptions
▶ e.g. joint Gaussianity (then check partial correlation)

S X

Y
time of day

car position image features
Y X

Z

Warmup: detecting unconditional dependence

𝑌 ∼ 𝒩 (0, 1)

𝜉1, 𝜉2 ∼ 𝒩 (0, 1) i.i.d. noise

𝑋 = (𝑌 + 𝜉1)
2

𝑍 = 𝑌 + 𝜉1 + 𝜉2

▶ 𝑋 and 𝑍 are uncorrelated

▶ One way to detect dependence: we can find
correlated nonlinear functions 𝑓(𝑋) and 𝑔(𝑍)

0 10
X

0

10

f(X) = X witness

5 0 5
Z

0

10

20
g(Z) = Z2 witness

𝑋⊥⊥𝑍 if and only if all square-integrable
functions 𝑓(𝑋) and 𝑔(𝑍) are uncorrelated

0 10
X

5

0Z

Correlation: 0.0

0 10
f(X)

0

10

20

g(
Z)

Correlation: 0.7

Warmup: detecting unconditional dependence

𝑌 ∼ 𝒩 (0, 1)

𝜉1, 𝜉2 ∼ 𝒩 (0, 1) i.i.d. noise

𝑋 = (𝑌 + 𝜉1)
2

𝑍 = 𝑌 + 𝜉1 + 𝜉2

▶ 𝑋 and 𝑍 are uncorrelated

▶ One way to detect dependence: we can find
correlated nonlinear functions 𝑓(𝑋) and 𝑔(𝑍)

0 10
X

0

10

f(X) = X witness

5 0 5
Z

0

10

20
g(Z) = Z2 witness

𝑋⊥⊥𝑍 if and only if all square-integrable
functions 𝑓(𝑋) and 𝑔(𝑍) are uncorrelated

0 10
X

5

0Z

Correlation: 0.0

0 10
f(X)

0

10

20

g(
Z)

Correlation: 0.7

Warmup: detecting unconditional dependence

▶ If there aren’t any correlated 𝑓(𝑋) and 𝑔(𝑍),
then 𝑋 and 𝑍 are independent

▶ How to check all enough nonlinear functions?

▶ Check 𝑓(𝑋) and 𝑔(𝑍) from kernel spaces

(RKHSs): 𝑓(𝑋) =
∑︁
𝑖

𝛼𝑖 𝑘(𝑋,𝑋𝑖) 0 10 X

f(X)

0.0

0.2

0.4

X 1k(, X)

X 2k(, X)

X 3k(, X)

▶ From RKHS properties: Cov (𝑓(𝑋), 𝑔(𝑍)) = ⟨𝑓, 𝐶𝑋𝑍 𝑔⟩ for the linear operator

𝐶𝑋𝑍 = E[𝑘(𝑋, ·)⊗ 𝑘(𝑍, ·)]− E[𝑘(𝑋, ·)]⊗ E[𝑘(𝑍, ·)]

▶ With linear kernels, 𝐶𝑋𝑍 is just the cross-covariance matrix E[𝑋𝑍⊤]− E[𝑋]E[𝑍]⊤

▶ If 𝐶𝑋𝑍 = 0, all 𝑓(𝑋) and 𝑔(𝑍) in the RKHSes are uncorrelated
▶ If our kernels are “rich enough” (Gaussian is enough), this implies independence

▶ Hilbert-Schmidt Independence Criterion: HSIC (𝑋, 𝑍) = ‖𝐶𝑋𝑍‖2HS = 0 iff 𝐶𝑋𝑍 = 0

▶ Can estimate with ĤSIC(𝑋,𝑍) = 1
𝐵2 1

⊤(︀𝐻𝐾𝑋𝑋𝐻 ⊙𝐾𝑍𝑍

)︀
1, where 𝐻 is “centring matrix”

▶ Deep nets with features 𝑋𝜃
~independent of 𝑍: min

𝜑
loss(𝜑(𝑋), 𝑌) + 𝛾 ĤSIC(𝜑(𝑋), 𝑍)

Detecting conditional dependence

𝑌 ∼ 𝒩 (0, 1)

𝜉1, 𝜉2 ∼ 𝒩 (0, 1) i.i.d. noise

𝑋 = (𝑌 + 𝜉1)
2

𝑍 = 𝑌 + 𝜉1 + 𝜉2

▶ 𝑋 and 𝑍 are dependent

▶ 𝑋 and 𝑍 are conditionally dependent given 𝑌
(through 𝜉1)

0 10
X

5

0Z

Correlation: 0.0

2

0

2

Y

How do we characterize conditional (in)dependence?

▶ Start by just conditioning everything on 𝑌 : 𝑋⊥⊥𝑍 | 𝑌 iff
for all 𝑓𝑌 ∈ 𝐿2

𝑋 and 𝑔𝑌 ∈ 𝐿2
𝑍 ,

E𝑋𝑍 [𝑓𝑌 (𝑋) 𝑔𝑌 (𝑍) | 𝑌] = E𝑋 [𝑓𝑌 (𝑋) | 𝑌] E𝑍 [𝑔𝑌 (𝑍) | 𝑌] 𝑌 -a.s.

▶ Equivalent: 𝑋⊥⊥𝑍 | 𝑌 iff for all 𝑓 ∈ 𝐿2
𝑋𝑌 and 𝑔 ∈ 𝐿2

𝑍𝑌 ,

E𝑋𝑍 [𝑓(𝑋,𝑌) 𝑔(𝑍, 𝑌) | 𝑌] = E𝑋 [𝑓(𝑋,𝑌) | 𝑌] E𝑍 [𝑔(𝑍, 𝑌) | 𝑌] 𝑌 -a.s.

▶ Equivalent (Daudin 1980): 𝑋⊥⊥𝑍 | 𝑌 iff proof

for all 𝑓 ∈ 𝐿2
𝑋𝑌 such that E𝑋 [𝑓(𝑋,𝑌) | 𝑌] = 0 𝑌 -a.s.

and all 𝑔 ∈ 𝐿2
𝑍𝑌 such that E𝑍 [𝑔(𝑍, 𝑌) | 𝑌] = 0 𝑌 -a.s.,

E
[︀
𝑓(𝑋,𝑌) 𝑔(𝑍, 𝑌)

]︀
= 0

▶ Equivalent: 𝑋⊥⊥𝑍 | 𝑌 iff for all 𝑓 ∈ 𝐿2
𝑋 , 𝑔 ∈ 𝐿2

𝑍𝑌 ,

E
[︁
𝑓(𝑋)

(︀
𝑔(𝑍, 𝑌)− E𝑍 [𝑔(𝑍, 𝑌) | 𝑌]

)︀]︁
= 0

Detecting conditional dependence

𝑌 ∼ 𝒩 (0, 1)

𝜉1, 𝜉2 ∼ 𝒩 (0, 1) i.i.d. noise

𝑋 = (𝑌 + 𝜉1)
2

𝑍 = 𝑌 + 𝜉1 + 𝜉2

▶ 𝑋 and 𝑍 are dependent

▶ 𝑋 and 𝑍 are conditionally dependent given 𝑌
(through 𝜉1)

0 10
X

0

10

f(X) = X witness

5 0 5
Z

0

10

20

g(Z, Y) = Z2 witness

𝑋⊥⊥𝑍 | 𝑌 if and only if all 𝑓(𝑋) are uncorrelated
with all 𝑔(𝑍, 𝑌)− E [𝑔(𝑍, 𝑌) | 𝑌] [Daudin 1980]

0 10
X

5

0Z

Correlation: 0.0

2

0

2

Y

0 10
f(X)

0

10

g(
Z,

Y)
E[

g(
Z,

Y)
|Y

] Correlation: 0.5

2

0

2

Y

CIRCE: Conditional Independence Regression CovariancE

▶ Want to check covariance of 𝑓(𝑋) and 𝑔𝑐(𝑍, 𝑌) = 𝑔(𝑍, 𝑌)− E [𝑔(𝑍, 𝑌) | 𝑌]
▶ 𝑔𝑐(𝑍, 𝑌) has mean zero, so they’re uncorrelated iff E[𝑓(𝑋) 𝑔𝑐(𝑍, 𝑌)] = 0

▶ The CIRCE operator gives ⟨𝑓, 𝐶𝑐
𝑋𝑍|𝑌 𝑔⟩ = E[𝑓(𝑋) 𝑔𝑐(𝑍, 𝑌)], using

𝐶𝑐
𝑋𝑍|𝑌 = E

[︁
𝑘(𝑋, ·)⊗

(︀
𝑘((𝑍, 𝑌), ·)− E[𝑘((𝑍 ′, 𝑌), ·) | 𝑌]

)︀]︁
▶ CIRCE(𝑋,𝑍 | 𝑌) = ‖𝐶𝑐

𝑋𝑍|𝑌 ‖
2
HS = 0 iff 𝑋⊥⊥𝑍 | 𝑌 , if kernels are “rich enough”

▶ Important special case: if 𝑘((𝑍, 𝑌), (𝑍 ′, 𝑌 ′)) = 𝑘(𝑍,𝑍 ′) 𝑘(𝑌, 𝑌 ′), we get

𝐶𝑐
𝑋𝑍|𝑌 = E[𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)

)︀
]

where 𝜇𝑍|𝑌 = E[𝑘(𝑍, ·) | 𝑌] is the conditional mean embedding of 𝑍 given 𝑌

CIRCE estimator

▶ Want squared norm of 𝐶𝑐
𝑋𝑍|𝑌 = E[𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)

)︀
]

▶ First, estimate conditional mean embedding 𝜇𝑍|𝑌 on a dataset {(𝑍𝑖, 𝑌 𝑖)}𝑀𝑖=1
▶ Use kernel ridge regression: inputs 𝑌 , RKHS-valued labels 𝑘(𝑍, ·)
▶ Use this to estimate the conditionally-centred kernel function

𝑘𝑐((𝑍, 𝑌), (𝑍′, 𝑌 ′)) = ⟨𝑘(𝑍, ·)− 𝜇̂𝑍|𝑌 (𝑌), 𝑘(𝑍′, ·)− 𝜇̂𝑍|𝑌 (𝑌 ′)⟩
≈ 𝑘(𝑍,𝑍′)− E[𝑘(𝑍,𝑍′) | 𝑌]− E[𝑘(𝑍,𝑍′) | 𝑌 ′] + E[𝑘(𝑍,𝑍′) | 𝑌 , 𝑌 ′]

▶ While training 𝜑(𝑋), for each batch {(𝜑(𝑋𝑖), 𝑍𝑖, 𝑌 𝑖)}𝐵𝑖=1:

▶ Get (𝐾𝑋𝑋)𝑖𝑗 = 𝑘(𝜑(𝑋𝑖), 𝜑(𝑋𝑗)), (𝐾𝑌 𝑌)𝑖𝑗 = 𝑘(𝑌𝑖, 𝑌𝑗), (𝐾̂
𝑐
𝑍𝑍)𝑖𝑗 = 𝑘𝑐((𝑍, 𝑌), (𝑍′, 𝑌 ′))

▶ Regularize with ĈIRCE = 1
𝐵(𝐵−1)

1⊤
(︁
𝐾𝑋𝑋 ⊙𝐾𝑌 𝑌 ⊙ 𝐾̂𝑐

𝑍𝑍

)︁
1

Benefits of CIRCE:

▶ As 𝐵,𝑀 → ∞, ĈIRCE → 0 iff 𝜑(𝑋)⊥⊥𝑍 | 𝑌 ; rate is known (see paper)

▶ 𝐾𝑌 𝑌 and 𝐾̂𝑐
𝑍𝑍 don’t depend on 𝜑:

▶ Can precompute them, so only need 𝑘(𝜑(𝑋𝑖), 𝜑(𝑋𝑗)) for each new 𝜑
▶ Separates (small) batch size 𝐵 and (big) regression training size 𝑀 : better convergence

Experiments

▶ dSprites dataset [Matthey et al., 2017]:
2D shapes in different locations

▶ Task: predict vertical position 𝑌
But be invariant to horizontal position 𝑍
𝑍 and 𝑌 have strong dependence in training

▶ Compare to HSCIC [Quinzan et al., 2022] (also kernel-based)
and GCM [Shah & Peters, 2020] (correlation-based)

▶ CIRCE wins!

S X

Y
horizontal pos.

vertical pos. image features
Y X

Z

Z

Y
X

0 100 101 102 103

regularization strength

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
SE

 lo
ss

A. CIRCE

in-domain
OOD
trained on OOD

0 101 102 103

regularization strength

0.000

0.025

0.050

0.075

0.100

0.125

0.150
M

SE
 lo

ss
B . HSCIC

in-domain
OOD
trained on OOD

0 10 2 10 1 100

regularization strength

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
SE

 lo
ss

C. GCM

in-domain
OOD
trained on OOD

CIRCE discussion

S X

Y
time of day

car position image features
Y X

Z

▶ CIRCE: a measure of conditional independence for feature learning

▶ It works with continuous variables and in deep learning settings

▶ Applications: domain shift invariance, fairness

▶ Ongoing: learn kernels on 𝑌 (straightforward) and 𝑍 (harder)

▶ Next: testing whether 𝑋⊥⊥𝑍 | 𝑌

arXiv paper

(code link inside)

Testing

▶ Learning with a CIRCE regularizer tries to learn a model where 𝑋⊥⊥𝑍 | 𝑌
▶ . . . did it work?

▶ Or: lots of other interesting conditional independence questions to ask!
▶ Is car insurance price (𝑋) ⊥⊥ neighbourhood’s racial makeup (𝑍) | driver risk (𝑌)?

▶ We’ll take a null hypothesis significance testing approach

▶ H0 : 𝑋⊥⊥𝑍 | 𝑌 ; alternative hypothesis is just “not that”

▶ Assuming good-enough kernels, equivalent to ask whether CIRCE(𝑋,𝑍 | 𝑌) = 0:

is
⃦⃦⃦
E
[︀
𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)

)︀]︀⃦⃦⃦2
= 0?

▶ Problem: estimating the conditional mean, 𝜇𝑍|𝑌 (𝑌), is really hard!

▶ Best-case minimax rate is 𝒪
(︁
1/𝑚1/4

)︁
; can be arbitrarily slow (Li et al. 2022)

▶ Rate for “everything else given a 𝜇̂𝑍|𝑌 ” is 𝒪(1/
√
𝑛)

Bias

▶ What happens when 𝜇̂𝑍|𝑌 = 𝜇𝑍|𝑌 +∆𝑍|𝑌 , with ∆𝑍|𝑌 ̸= 0, when 𝑋⊥⊥𝑍 | 𝑌 ?⃦⃦⃦
E
[︁
𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)−∆𝑍|𝑌 (𝑌)

)︀]︁⃦⃦⃦2
=

⃦⃦⃦
E
[︀
𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)

)︀]︀⏟ ⏞
0, since 𝑋⊥⊥𝑍 | 𝑌

−E
[︀
𝑘(𝑋, ·)⊗ 𝑘(𝑌, ·)⊗∆𝑍|𝑌 (𝑌)

]︀⃦⃦⃦2
= E

[︀
𝑘(𝑋,𝑋 ′) 𝑘(𝑌, 𝑌 ′) ⟨∆𝑍|𝑌 (𝑌),∆𝑍|𝑌 (𝑌

′)⟩⏟ ⏞
likely big if 𝑘(𝑌, 𝑌 ′) is big

]︀
▶ If we estimated the regression wrong, it doesn’t matter how many samples we get for the

rest of the estimator: ĈIRCE will be big
▶ Understanding how big is hard

(Split)KCI

▶ When used during training a deep model, it helped to only use one regression

▶ For testing, this is less relevant

▶ Instead of the CIRCE operator, the KCI operator (Zhang et al. 2012) is

𝐶KCI
𝑋𝑍|𝑌 = E

[︀(︀
𝑘(𝑋, ·)− 𝜇𝑋|𝑌 (𝑌)

)︀
⊗ 𝑘(𝑌, ·)⊗

(︀
𝑘(𝑍, ·)− 𝜇𝑍|𝑌 (𝑌)

)︀]︀
▶ 𝐶KCI

𝑋𝑍|𝑌 = 0 iff 𝑋⊥⊥𝑍 | 𝑌 ; with incorrect regressions, bias becomes

E
[︀
⟨∆𝑋|𝑌 (𝑋),∆𝑋|𝑌 (𝑋

′)⟩ 𝑘(𝑌, 𝑌 ′) ⟨∆𝑍|𝑌 (𝑌),∆𝑍|𝑌 (𝑌
′)⟩

]︀
▶ Can reduce this by replacing ⟨∆𝑋|𝑌 (𝑋),∆𝑋|𝑌 (𝑋

′)⟩ with ⟨∆(1)
𝑋|𝑌 (𝑋),∆

(2)
𝑋|𝑌 (𝑋

′)⟩
▶ Compute by using two different regressions: split the data used to train it
▶ The regression is really hard, so it’s annoying to not use all the data
▶ . . . but the regression is so hard that losing half the data doesn’t hurt that much

▶ Everything still works out since other one is centred (like CIRCE)

▶ Can even use different kernels (not necessarily universal!) – any arbitrary functions
▶ Simple kernels might help: faster convergence, still debiasing

Testing with SplitKCI

▶ Zhang et al. (2012) tested based on a gamma approximation to the null distribution

▶ That approximation can’t cope with the bias when mean estimation is poor

2004006008001000
myz

10 2

10 1

100

Ty
pe

 I
er

ro
r (

=0
.0

5)

unbalanced data regime

2004006008001000
myz

10 2

10 1

100
standard regime

KCI (wild)
KCI (gamma)
SplitKCI (wild)
SplitKCI (gamma)
CIRCE (wild)
CIRCE (gamma)

▶ Instead, use wild bootstrap
▶ Approximate null distribution by element-wise multiplying the centred kernel matrix by 𝑞𝑞⊤,

𝑞 a vector of random signs
▶ Can prove it works (asymptotically), as long as we have enough regression samples

Better Type I error control

▶ On synthetic Gaussian data:

200 400 600 800 1000
myz

10 1

100
Ty

pe
 I

er
ro

r (
=0

.0
5)

unbalanced data regime

200 400 600 800 1000
myz

10 1

100
standard regime

KCI
SplitKCI
CIRCE

▶ Indications of similar results on real car insurance data

More powerful than competitors

▶ Different synthetic task; left side is 𝑛 = 100, right is 𝑛 = 200

10 2

10 1

Ty
pe

 I
er

ro
r (

=0
.0

5)

unbalanced data regime

10 2

10 1

standard regime

200 400 600 800 1000
myz

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 II
 e

rro
r (

=0
.0

5)

200 400 600 800 1000
myz

0.0

0.2

0.4

0.6

0.8

1.0 KCI
SplitKCI
GCM
RBPT2'

10 2

10 1

Ty
pe

 I
er

ro
r (

=0
.0

5)

unbalanced data regime

10 2

10 1

standard regime

200 600 1000 2000
myz

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 II
 e

rro
r (

=0
.0

5)

200 600 1000 2000
myz

0.0

0.2

0.4

0.6

0.8

1.0

KCI
SplitKCI
GCM
RBPT2'

Discussion

▶ CIRCE: a measure of conditional independence for feature learning
▶ Works with continuous variables, in deep learning settings
▶ Applications to fairness, domain shift, . . .
▶ Ongoing extension: learn kernels on 𝑌 (straightforward) and/or 𝑍 (harder)

▶ Unfortunately, CIRCE is really bad at testing

▶ Bias seems to be a big factor for it and its predecessor KCI

▶ SplitKCI: an “in-between” statistic based on data splitting
▶ Debiasing with data splitting
▶ Want to use a lot more data for regression than rest of test

▶ Good setting: limited (𝑋,𝑍, 𝑌) triples, but lots of (𝑋,𝑌) and (𝑍, 𝑌) pairs

▶ Wild bootstrap for estimating the test threshold

Characterizing conditional (in)dependence – proof sketch back

∀𝑓 ∈ 𝐿2
𝑋𝑌 , 𝑔 ∈ 𝐿2

𝑍𝑌 , E[𝑓𝑔 | 𝑌] = E[𝑓 | 𝑌]E[𝑔 | 𝑌] (A)

⇕ [Daudin 1980]

∀𝑓 ∈ 𝐿2
𝑋𝑌 , 𝑔 ∈ 𝐿2

𝑍𝑌 s.t. E[𝑓 | 𝑌] = 0 = E[𝑔 | 𝑌], E[𝑓𝑔] = 0 (B)

▶ (A) =⇒ (B), (C): Just apply (A) to 𝑓 and 𝑔, RHS becomes 0

▶ (B) =⇒ (A):
▶ Choose 𝑓(𝑋,𝑌) = 𝑓(𝑋,𝑌)− E[𝑓(𝑋,𝑌) | 𝑌] and 𝑔(𝑍, 𝑌) = 𝑔(𝑍, 𝑌)− E[𝑔(𝑍, 𝑌) | 𝑌].

▶ 0 = E[𝑓𝑔] = E𝑌

[︁
E[𝑓𝑔 | 𝑌]

]︁
= E𝑌

[︁
E[𝑓𝑔 | 𝑌]− E[𝑓 | 𝑌]E[𝑔 | 𝑌]

]︁
▶ Letting 𝑔 include an indicator on sets of 𝑌 , implies must hold almost surely in 𝑌

▶ Same basic idea works for uncentred 𝑓 ∈ 𝐿2
𝑋𝑌 and centred 𝑔 ∈ 𝐿2

𝑍𝑌

▶ Slightly more argument to drop the 𝑌 in 𝑓

