Conditional independence measures for fairer, more reliable models

> Danica J. Sutherland UBC + Amii; she/her

based on joint work with:

Roman Pogodin

Gatsby, UCL \rightarrow McGill + Mila

(both)

(CIRCE)

Namrata Deka Antonin Schrab

Centre for AI + Gatsby, UCL

(SplitKCI)

Gatsby, UCL + DeepMind

Yazhe Li

(both)

Victor Veitch

(CIRCE)

Arthur Gretton Gatsby, UCL + DeepMind

(both)

BIRS workshop: Statistical Aspects of Trustworthy Machine Learning, Feb 2023

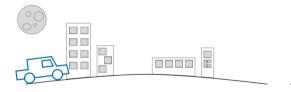
CIRCE is arXiv:2212.08645 (ICLR 2023, "notable: top 5%") SplitKCI is new work in submission; on arXiv soon...

Intro: conditionally invariant representations

- Self-driving car tries to predict its location
- Starts in the morning
- Finishes in the evening
- ... learns to predict location from time of day

Distribution shift: car starts in the afternoon

…and makes lots of errors



Intro: conditionally invariant representations

Idealized solution to this distribution shift problem:

▶ predictions should be conditionally independent of time given the car position: X⊥⊥Z | Y

Same form as a common **domain invariance** objective: features ⊥⊥ domain ID | true label

Same form as common **fairness** criterion (equalized odds): predictions ⊥⊥ protected attribute | true label time of day Z X car position image features

Problem: conditional dependence is hard to measure!

- **b** Discrete Y: check dependence of X and Z for each Y value
 - On each minibatch during training...
- Continuous Y: classical methods need strong assumptions
 - e.g. joint Gaussianity (then check partial correlation)

Warmup: detecting unconditional dependence

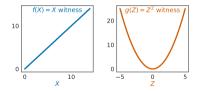
$$Y \sim \mathcal{N}(0, 1)$$

$$\xi_1, \xi_2 \sim \mathcal{N}(0, 1) \text{ i.i.d. noise}$$

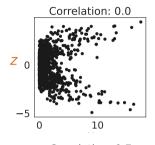
$$X = (Y + \xi_1)^2$$

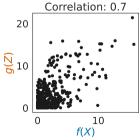
$$Z = Y + \xi_1 + \xi_2$$

 \blacktriangleright X and Z are **uncorrelated**



 $X \perp \!\!\!\perp Z$ if and only if **all** square-integrable functions f(X) and g(Z) are uncorrelated





Warmup: detecting unconditional dependence

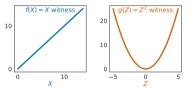
$$Y \sim \mathcal{N}(0, 1)$$

$$\xi_1, \xi_2 \sim \mathcal{N}(0, 1) \text{ i.i.d. noise}$$

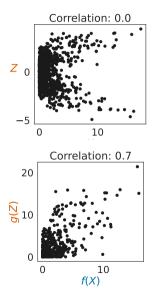
$$X = (Y + \xi_1)^2$$

$$Z = Y + \xi_1 + \xi_2$$

- \blacktriangleright X and Z are **uncorrelated**
- One way to detect dependence: we can find correlated **nonlinear** functions f(X) and g(Z)

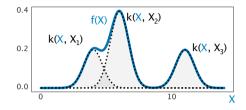


 $X \perp\!\!\!\perp Z$ if and only if **all** square-integrable functions f(X) and g(Z) are uncorrelated



Warmup: detecting unconditional dependence

- ► If there aren't any correlated f(X) and g(Z), then X and Z are independent
- How to check all enough nonlinear functions?
- Check f(X) and g(Z) from kernel spaces (RKHSs): $f(X) = \sum_{i} \alpha_i k(X, X_i)$



From RKHS properties: $\operatorname{Cov}(f(X), g(Z)) = \langle f, C_{XZ} g \rangle$ for the linear operator

$$C_{XZ} = \mathbb{E}[k(X, \cdot) \otimes k(Z, \cdot)] - \mathbb{E}[k(X, \cdot)] \otimes \mathbb{E}[k(Z, \cdot)]$$

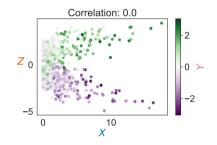
- ▶ With linear kernels, C_{XZ} is just the cross-covariance matrix $\mathbb{E}[XZ^{\top}] \mathbb{E}[X]\mathbb{E}[Z]^{\top}$
- ▶ If $C_{XZ} = 0$, all f(X) and g(Z) in the RKHSes are uncorrelated
- If our kernels are "rich enough" (Gaussian is enough), this implies independence
- ▶ Hilbert-Schmidt Independence Criterion: HSIC $(X, Z) = ||C_{XZ}||_{HS}^2 = 0$ iff $C_{XZ} = 0$
 - ► Can estimate with $\widehat{\text{HSIC}}(X, \mathbb{Z}) = \frac{1}{B^2} \mathbf{1}^\top (HK_{XX}H \odot K_{\mathbb{Z}\mathbb{Z}})\mathbf{1}$, where H is "centring matrix"

• Deep nets with features X_{θ} ~independent of Z: $\min_{\lambda} loss(\phi(X), Y) + \gamma \widehat{HSIC}(\phi(X), Z)$

Detecting conditional dependence

 $Y \sim \mathcal{N}(0, 1)$ $\xi_1, \xi_2 \sim \mathcal{N}(0, 1) \text{ i.i.d. noise}$ $X = (Y + \xi_1)^2$ $Z = Y + \xi_1 + \xi_2$

- \blacktriangleright X and Z are **dependent**
- X and Z are conditionally dependent given Y (through ξ₁)



How do we characterize conditional (in)dependence?

Start by just conditioning everything on $Y: X \perp \!\!\!\perp Z \mid Y$ iff for all $f_Y \in L^2_X$ and $g_Y \in L^2_Z$,

 $\mathbb{E}_{XZ}[f_Y(X) g_Y(Z) \mid Y] = \mathbb{E}_X[f_Y(X) \mid Y] \mathbb{E}_Z[g_Y(Z) \mid Y] \qquad Y\text{-a.s.}$

• Equivalent: $X \perp\!\!\!\perp Z \mid Y$ iff for all $f \in L^2_{XY}$ and $g \in L^2_{ZY}$,

 $\mathbb{E}_{XZ}[f(X,Y)g(Z,Y) \mid Y] = \mathbb{E}_X[f(X,Y) \mid Y] \mathbb{E}_Z[g(Z,Y) \mid Y] \qquad Y\text{-a.s.}$

▶ Equivalent (Daudin 1980): $X \perp \!\!\!\perp Z \mid Y$ iff for all $\tilde{f} \in L^2_{XY}$ such that $\mathbb{E}_X[\tilde{f}(X,Y) \mid Y] = 0$ Y-a.s. and all $\tilde{g} \in L^2_{ZY}$ such that $\mathbb{E}_Z[\tilde{g}(Z,Y) \mid Y] = 0$ Y-a.s.,

 $\mathbb{E}\left[\tilde{f}(X,Y)\,\tilde{g}(Z,Y)\right] = 0$

• Equivalent: $X \perp\!\!\!\perp Z \mid Y$ iff for all $f \in L^2_X$, $g \in L^2_{ZY}$,

 $\mathbb{E}\left[f(X)\left(g(Z,Y) - \mathbb{E}_{Z}[g(Z,Y) \mid Y]\right)\right] = 0$

➡ proof

Detecting conditional dependence

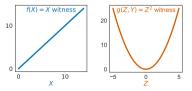
$$Y \sim \mathcal{N}(0, 1)$$

$$\xi_1, \xi_2 \sim \mathcal{N}(0, 1) \text{ i.i.d. noise}$$

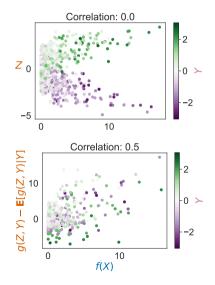
$$X = (Y + \xi_1)^2$$

$$Z = Y + \xi_1 + \xi_2$$

- \blacktriangleright X and Z are **dependent**
- X and Z are conditionally dependent given Y (through ξ₁)



 $\begin{array}{l} X \! \perp \!\!\! \perp \!\!\! Z \mid Y \text{ if and only if all } f(X) \text{ are uncorrelated} \\ \text{with all } g(Z,Y) - \mathbb{E}\left[g(Z,Y) \mid Y\right] \text{ [Daudin 1980]} \end{array}$



CIRCE: Conditional Independence Regression CovariancE

- ▶ Want to check covariance of f(X) and g^c(Z,Y) = g(Z,Y) E[g(Z,Y) | Y]
 ▶ g^c(Z,Y) has mean zero, so they're uncorrelated iff E[f(X) g^c(Z,Y)] = 0
- ► The **CIRCE** operator gives $\langle f, C_{XZ|Y}^c g \rangle = \mathbb{E}[f(X) g^c(Z, Y)]$, using

$$C^c_{XZ|Y} = \mathbb{E}\Big[k(X,\cdot) \otimes \left(k((Z,Y),\cdot) - \mathbb{E}[k((Z',Y),\cdot) \mid Y]\right)\Big]$$

► CIRCE $(X, Z | Y) = ||C_{XZ|Y}^c||_{HS}^2 = 0$ iff $X \perp \!\!\!\perp Z | Y$, if kernels are "rich enough"

▶ Important special case: if k((Z, Y), (Z', Y')) = k(Z, Z') k(Y, Y'), we get

$$C_{XZ|Y}^{c} = \mathbb{E}[k(X, \cdot) \otimes k(Y, \cdot) \otimes \left(k(Z, \cdot) - \mu_{Z|Y}(Y)\right)]$$

where $\mu_{Z|Y} = \mathbb{E}[k(Z, \cdot) \mid Y]$ is the conditional mean embedding of Z given Y

CIRCE estimator

- ► Want squared norm of $C^c_{XZ|Y} = \mathbb{E}[k(X, \cdot) \otimes k(Y, \cdot) \otimes (k(Z, \cdot) \mu_{Z|Y}(Y))]$
- First, estimate conditional mean embedding $\mu_{Z|Y}$ on a dataset $\{(Z_i, Y_i)\}_{i=1}^M$
 - Use kernel ridge regression: inputs Y, RKHS-valued labels $k(Z, \cdot)$
 - Use this to estimate the conditionally-centred kernel function

 $\hat{k}^{c}((Z,Y),(Z',Y')) = \langle k(Z,\cdot) - \hat{\mu}_{Z|Y}(Y), k(Z',\cdot) - \hat{\mu}_{Z|Y}(Y') \rangle$ $\approx k(Z,Z') - \mathbb{E}[k(Z,Z') \mid Y] - \mathbb{E}[k(Z,Z') \mid Y'] + \mathbb{E}[k(Z,Z') \mid Y,Y']$

- While training $\phi(X)$, for each batch $\{(\phi(X_i), Z_i, Y_i)\}_{i=1}^B$:
 - Get $(K_{XX})_{ij} = k(\phi(X_i), \phi(X_j)), (K_{YY})_{ij} = k(Y_i, Y_j), (\hat{K}^c_{ZZ})_{ij} = \hat{k}^c((Z, Y), (Z', Y'))$

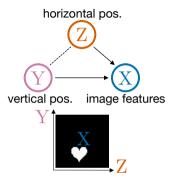
• Regularize with
$$\widehat{\text{CIRCE}} = \frac{1}{B(B-1)} \mathbf{1}^{\top} \left(K_{XX} \odot K_{YY} \odot \hat{K}_{ZZ}^c \right) \mathbf{1}$$

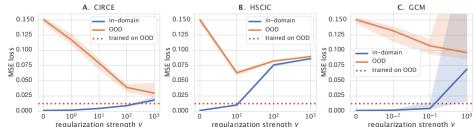
Benefits of CIRCE:

- ▶ As $B, M \to \infty$, $\widehat{\text{CIRCE}} \to 0$ iff $\phi(X) \perp \mathbb{Z} \mid Y$; rate is known (see paper)
- K_{YY} and \hat{K}_{ZZ}^c don't depend on ϕ :
 - Can precompute them, so only need $k(\phi(X_i), \phi(X_j))$ for each new ϕ
 - Separates (small) batch size B and (big) regression training size M: better convergence

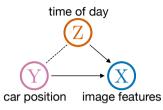
Experiments

- dSprites dataset [Matthey et al., 2017]: 2D shapes in different locations
- Task: predict vertical position Y But be invariant to horizontal position Z
 Z and Y have strong dependence in training
- Compare to HSCIC [Quinzan et al., 2022] (also kernel-based) and GCM [Shah & Peters, 2020] (correlation-based)





CIRCE discussion



- **CIRCE**: a measure of conditional independence for feature learning
- It works with continuous variables and in deep learning settings
- Applications: domain shift invariance, fairness
- Ongoing: learn kernels on Y (straightforward) and Z (harder)
- Next: testing whether $X \perp \!\!\!\perp Z \mid Y$

⁽code link inside)

Testing

- Learning with a CIRCE regularizer tries to learn a model where $X \perp\!\!\!\perp Z \mid Y$
- ...did it work?
- Or: lots of other interesting conditional independence questions to ask!
 - ▶ Is car insurance price $(X) \perp$ neighbourhood's racial makeup $(Z) \mid$ driver risk (Y)?
- We'll take a null hypothesis significance testing approach
- $\mathfrak{H}_0: X \perp \mathbb{Z} \mid Y$; alternative hypothesis is just "not that"
- Assuming good-enough kernels, equivalent to ask whether CIRCE(X, Z | Y) = 0:

is
$$\left\|\mathbb{E}\left[k(X,\cdot)\otimes k(Y,\cdot)\otimes \left(k(Z,\cdot)-\mu_{Z|Y}(Y)\right)\right]\right\|^2=0?$$

- ▶ Problem: estimating the conditional mean, $\mu_{Z|Y}(Y)$, is really hard!
 - Best-case minimax rate is $O(1/m^{1/4})$; can be arbitrarily slow (Li et al. 2022)
 - Rate for "everything else given a $\hat{\mu}_{Z|Y}$ " is $\mathcal{O}(1/\sqrt{n})$

Bias

▶ What happens when $\hat{\mu}_{Z|Y} = \mu_{Z|Y} + \Delta_{Z|Y}$, with $\Delta_{Z|Y} \neq 0$, when $X \perp \!\!\!\perp Z \mid Y$?

$$\begin{split} \left\| \mathbb{E} \Big[k(X, \cdot) \otimes k(Y, \cdot) \otimes \left(k(Z, \cdot) - \mu_{Z|Y}(Y) - \Delta_{Z|Y}(Y) \right) \Big] \right\|^2 \\ &= \left\| \underbrace{\mathbb{E} \left[k(X, \cdot) \otimes k(Y, \cdot) \otimes \left(k(Z, \cdot) - \mu_{Z|Y}(Y) \right) \right]}_{0, \text{ since } X \perp Z \mid Y} - \mathbb{E} \left[k(X, \cdot) \otimes k(Y, \cdot) \otimes \Delta_{Z|Y}(Y) \right] \right\|^2 \\ &= \mathbb{E} \Big[k(X, X') \ k(Y, Y') \underbrace{\left\langle \Delta_{Z|Y}(Y), \Delta_{Z|Y}(Y') \right\rangle}_{\text{likely big if } k(Y, Y') \text{ is big}} \Big] \end{split}$$

- If we estimated the regression wrong, it *doesn't matter how many samples we get* for the rest of the estimator: CIRCE will be big
 - Understanding how big is hard

(Split)KCI

- When used during training a deep model, it helped to only use one regression
- For testing, this is less relevant
- ▶ Instead of the CIRCE operator, the KCI operator (Zhang et al. 2012) is

 $C_{XZ|Y}^{\text{KCI}} = \mathbb{E}\left[\left(k(X, \cdot) - \mu_{X|Y}(Y)\right) \otimes k(Y, \cdot) \otimes \left(k(Z, \cdot) - \mu_{Z|Y}(Y)\right)\right]$

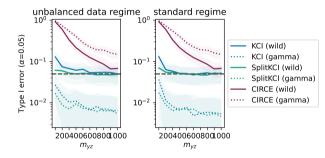
• $C_{XZ|Y}^{\text{KCI}} = 0$ iff $X \perp \!\!\!\perp Z \mid Y$; with incorrect regressions, bias becomes

 $\mathbb{E}\left[\left<\Delta_{X|Y}(X), \Delta_{X|Y}(X')\right> k(Y,Y') \left<\Delta_{Z|Y}(Y), \Delta_{Z|Y}(Y')\right>\right]$

- Can reduce this by replacing $\langle \Delta_{X|Y}(X), \Delta_{X|Y}(X') \rangle$ with $\langle \Delta_{X|Y}^{(1)}(X), \Delta_{X|Y}^{(2)}(X') \rangle$
 - Compute by using two different regressions: split the data used to train it
 - The regression is really hard, so it's annoying to not use all the data
 - ... but the regression is so hard that losing half the data doesn't hurt that much
- Everything still works out since other one is centred (like CIRCE)
- Can even use different kernels (not necessarily universal!) any arbitrary functions
 - Simple kernels might help: faster convergence, still debiasing

Testing with SplitKCI

- > Zhang et al. (2012) tested based on a gamma approximation to the null distribution
- That approximation can't cope with the bias when mean estimation is poor

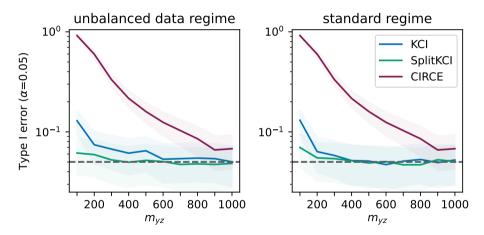


Instead, use wild bootstrap

- Approximate null distribution by element-wise multiplying the centred kernel matrix by qq^{\top} , q a vector of random signs
- Can prove it works (asymptotically), as long as we have enough regression samples

Better Type I error control

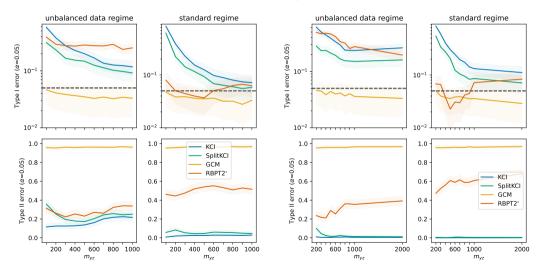
On synthetic Gaussian data:



Indications of similar results on real car insurance data

More powerful than competitors

• Different synthetic task; left side is n = 100, right is n = 200



Discussion

CIRCE: a measure of conditional independence for feature learning

- Works with continuous variables, in deep learning settings
- Applications to fairness, domain shift, ...
- Ongoing extension: learn kernels on Y (straightforward) and/or Z (harder)
- Unfortunately, CIRCE is really bad at testing
- Bias seems to be a big factor for it and its predecessor KCI
- SplitKCI: an "in-between" statistic based on data splitting
 - Debiasing with data splitting
 - Want to use a lot more data for regression than rest of test
 - Good setting: limited (X, Z, Y) triples, but lots of (X, Y) and (Z, Y) pairs
 - Wild bootstrap for estimating the test threshold

Characterizing conditional (in)dependence – proof sketch

- ► Choose $\tilde{f}(X, Y) = f(X, Y) \mathbb{E}[f(X, Y) | Y]$ and $\tilde{g}(Z, Y) = g(Z, Y) \mathbb{E}[g(Z, Y) | Y]$. ► $0 = \mathbb{E}[\tilde{f}\tilde{g}] = \mathbb{E}_Y \left[\mathbb{E}[\tilde{f}\tilde{g} | Y] \right] = \mathbb{E}_Y \left[\mathbb{E}[fg | Y] - \mathbb{E}[f | Y]\mathbb{E}[g | Y] \right]$
- Letting g include an indicator on sets of Y, implies must hold almost surely in Y
- ▶ Same basic idea works for uncentred $f \in L^2_{XY}$ and centred $g \in L^2_{ZY}$
- Slightly more argument to drop the Y in f

 \forall