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Deep learning: VC dimension

For ReLU (or general piecewise-linear) nets with P params and depth D:
. VCdim = 6(PD log P), Q(PD log =), so nearly tight [BHLM19]

D
P = de_ldf for fully-connected networks
k=1
For piecewise-constant, e.g. threshold functions, VCdim = O(P log P)
For piecewise-polynomial, O(PD? + PD log P), O(PU) with U units
For sigmoids/similar, O(P?U?) and Q(P?)
 Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access
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Problems with parameter counting

 \We use networks with a lot of parameters
 ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion

* \We can train our networks to get zero error even for random labels

 Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
 Neyshabur et al. (2015), Zhang et al. (2017)
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s 0) under different label corruptions.
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Problems with parameter counting

 \We use networks with a lot of parameters
 ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion

* \We can train our networks to get zero error even for random labels
 Even AlexNet can shatter CIFAR-10, almost shatter ImageNet

 Neyshabur et al. (2015), Zhang et al. (2017)
 But these architectures do generalize well — VC of arch. can’t explain that

 Making hidden layers wider can often improve generalization,
but worsens parameter counting-based bounds


https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Rademacher complexity

Assignment 3 shows:

» for depth-D nets whose weights W have all rows |[(W,); ,I|; < B and no intercept,

o if they use componentwise M-Lipschitz activations with (0) = 0,
+ if inputs have max||x||, < C,

then the Rademacher complexity is bounded by (2MB)”

something
m

Fancier but similar proofs can be slightly better, but still BY

Another way via covering numbers gives a bound based on HH W

k
* Product of spectral norms upper bounds the Lipschitz constant of the net
Can show that this kind of product is necessary (Theorem 3.4 here or 7 here)
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Problem with norm-based bounds

These kinds of bounds tend to be “vacuous” (e.g. prove 0-1 error is less
than 17) for realistic problems

fantastic geﬂerafigatim (W(gasures
and Wrhere to find "bhem

Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi
Dilip Krishnan, Samy Bengio
Google

{ydjiang,neyshabur,hmobahi,dilipkay,bengio}@google.com

In this study, we trained more than 10,000 models over two image classification datasets, namely,
CIFAR-10 (Krizhevsky et al.; 2014) and Street View House Numbers (SVHN) Netzer et al. (2011). In

2. Many norm-based measures not only perform poorly, but negatively correlate with generaliza-
tion specifically when the optimization procedure injects some stochasticity. In particular, the
generalization bound based on the product of spectral norms of the layers (similar to that of
Bartlett et al. (2017)) has very strong negative correlation with generalization.
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Some ERMs actually mlght not generalize

(m = 20, y = cubic(x) + noise)
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Some algorithms generalize, some don’t
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Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient £, norms (log scale), and training risks of the RFF
model predictors h, y learned on a subset of MNIST (n = 10%, 10 classes). The interpolation threshold is achieved at N = 10%.

Belkin/Hsu/Ma/Mandal, PNAS 2019
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Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n =4 - 10°, d = 784,
K =10 classes). The number of parameters is (d+1)-H+(H+ 1) -K. The
interpolation threshold (black dashed line) is observed at n - K.
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Fig. 4. Double-descent risk curve for random forests on MNIST. The double-
descent risk curve is observed for random forests with increasing model
complexity trained on a subset of MNIST (n = 10%, 10 classes). Its complex-
ity is controlled by the number of trees Niee and the maximum number of

leaves allowed for each tree N 5.
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Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
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Definition 1 (Effective Model Complexity) The Effective Model Complexity (EMC) of a training
procedure T, with respect to distribution D and parameter € > 0, is defined as:

EMCop (7)) := max {n | Eg.pn[Errorg(7(S5))] < €}

where Errorg (M) is the mean error of model M on train samples S.

Our main hypothesis can be informally stated as follows:

Hypothesis 1 (Generalized Double Descent hypothesis, informal) For any natural data distribu-

tion D, neural-network-based training procedure T, and small ¢ > 0, if we consider the task of
predicting labels based on n samples from D then:

Under-paremeterized regime. I[f EMCop (7)) is sufficiently smaller than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Over-parameterized regime. If EMCyp (7)) is sufficiently larger than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Critically parameterized regime. If EMCp (7 ) = n, then a perturbation of T that increases its
effective complexity might decrease or Increase the test error.

15 Nakkiran et al. ICLR-20
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e Claim: double descent isn’t “really” about interpolation

* For trees, gradient boosting: previous experiments start ensembling
after the model interpolates (so you can keep adding parameters)

* For linear regression. more subtle, but can view it that way too
 Red regime actually decreases (one notion of) “effective” parameters

» This paper (October 2023) doesn’t try to 4 U-tum ‘g‘ogl‘:g:’l:ilzessf;'i‘stt‘iClgti‘i';';;';ﬁgl’mmeter
explain the neural setting
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